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Introduction



Spec and the Structure Sheaf

1.1 Spec of a Ring

Throughout this expository paper, we take our rings to be commutative with identity. We begin with
the definition of Spec:

Definition 1.1.1. If R is a commutative ring, then Spec R is a priori a set defined by:

Spec R = {p : p is a prime ideal of R}

Example 1.1.1. Let R = Z, then we have that Spec Z can be identified with the set of all prime numbers.
Moreover, if R is a field, then Spec R is the singleton set consisting only of the zero ideal (0). If R = R[x]
is the polynomial ring with real coefficients, then:

Spec R = {(0),(z —r),(2® +ba +c) : r,b,c € R,b* — 4 < 0}

Note that if ¢ : A — B is a ring homomorphism between commutative rings A and B, we have that
there is induced set map:
1 : Spec B — Spec A
q— ¢ (q)

turning Spec into a contravariant functor from the category of commutative rings to the category of sets.
We will shortly put a topology on Spec R so that the induced set map is actually a continuous map
between topological spaces.

Definition 1.1.2. Let I be an ideal of a commutative ring R, then we define the set V(I) to be:
V(I)={p € SpecR: I C p}

If f e A, then we take V(f) := V({f)), and clearly we have that:
V(f)={p€SpecR: f € p}

Similarly for any set S, we define V(.5) := V((S)).

We now have the following;:

Proposition 1.1.1. Taking the closed sets of Spec R to be V(I) defines a topology on Spec R such that
the induced map 1 : Spec B — Spec A from ¢ : A — B is continuous.

Proof. We need to check that the finite unions of closed sets are closed, that infinite intersections of
closed sets are closed, and that ) and Spec R are closed. We begin with the latter, note that:

V(Spec R) = {p € Spec R : Spec R C p} =)
and that:
V((0)) ={p € SpecR:0 € p} =SpecR
so the emptyset and Spec R are closed. Now suppose that I and J are two ideals, then:

V(I)UV(J)={peSpecR:peV({I)orpeV(J)}
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We claim that this equal to V(I N J). Suppose that p € V(I)U (J), then I C por J C p, if I C p, then
we have that I NJ C I C p, and similarly for J, hence p e V(INJ). fp e V(INJ), then INJ Cp, so
let 7 € I-J,then r=1i-j for some i € I and j € J. It follows that r € INJ, so I -J C p. Now suppose
that I ¢ p, then there exists at least one i ¢ p. It follows that for all j € J, that i-j € p, hence J C p.
The same argument for J then implies that if J ¢ p, then I C p. Note that if neither I C p, nor J C p,
we have that there exists an ¢ € I, and a j € J, such that 4,5 ¢ p, but - jp contradicting the fact that
p is prime. It follows that if TN J C p, then [ -J C p, and thus either I C p or J C p, implying that
p € V(I)UV(J), hence V(INJ) =V(I)UV(J), as desired.

Now let I, be an infinite family of ideals, we claim that:

- {ze)

where ) I, is the smallest ideal containing I,. In other words, it is the ideal generated by U,la
Suppose that p € N, V(I,), then we have that I, C p for all a. Now since an i € ) I, can be written
as the a finite sum >."_, r;, where each r; € I, C p, we have that i € p, so (), V(Is) C V(Y I.). Now
suppose that p € V(ta I,), then > I, C p. It follows that for all o, I, C Y Ia, so In C p, hence
p € V(1) for all a. It follows that p € N,V(I,) implying the claim.

Let ¢ : A — B be a ring homomorphism, and 1 : Spec B — Spec A be the corresponding set map.
We need only show that for each I C A, that ¢y=*(V(I)) is a closed set in Spec B. We have that:

¢~ (V(I)) ={q € Spec B : ¢)(q) € V(I)}
={q € SpecB: ¢ '(q) € V(I)}
={q€SpecB:IC ¢ '(q)}
={q € Spec B : ¢(I) C q}
={q € Spec B : {¢(I)) C q}
=V({¢(1)))
=V(o(1))

so 1 is a continuous map. O

The above topology is called the Zariski topology on Spec R. We also have the following helpful
lemma:

Lemma 1.1.1. Let R be a commutative ring, then the following relations hold:
a) V(I) = V(1)
b) JCcI=V(J)D>V{)
¢) VI) cV(J) <= VID>VJ

Proof. First note that the radical of I is defined by:

VIi={reR:IneZ" mel}= ﬂ p

peV(I)

If p € V(I), then we have that I C p. Suppose that r € V1, then we have that ™ € I, so ™ € p. We can
write r® = "1 . p, so either 7"~ € p or r € p. If » € p, then we are done. If 7"~ ! € p, then we repeat
the process until we come to conclusion that 72 € p, implying r € p, so /I C p, hence V(I) C V(/T). If
p € V(V/T), then we have that /T C p, however clearly I € v/T, so I C p, hence V(v/I) C V(I), implying
a).

Now suppose that J C I, and let p € V(I). It follows that I C p,so J C I C p, implies that p € V(.J),
so V(J) D V(I), hence we have b).

Finally suppose V(I) C V(J). By definition:

Vi= (\» ad Vi= )

pev(J) peV(I)
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Suppose that r € v/J, then r € p for all p € V(J). Since all p € V(I) lie in V(J) as well, it follows that
r € VI hence v/J C V1. If v/J C V/I, then by b) and a) we have that V(I) C V(J) implying c).

O

We want to develop a basis for the Zariski topology on Spec R.
Definition 1.1.3. For each r € R, define the distinguished open to be:

Uy = V(f)" = Spec R ~ V(f)
Lemma 1.1.2. The set of distinguished opens form a basis for the Zariski topology on Spec R.

Proof. Suppose that U C Spec R is an open subset, then for some I we have that:

U =V(I)°

so any open set is the arbitrary union of distinguished opens, hence the distinguished opens generate the
Zariski topology on Spec R. O

Note that if ¢ € U N Uy, then f ¢ qand g ¢ q, so fg ¢ q, hence q € Uy,. We thus have that the
intersection of two distinguished opens is again a distinguished open. We also have the following lemma,
akin to Lemma 1.1.1:

Lemma 1.1.3. For all f,g € R, the distinguished opens satisfy:
a) Ufn = Uf

b) Uy C Uy <= /() /{9

) UpCUy<=3ImeZt,reR f"=r-g

Proof. Suppose that q € Ugn, then f™ ¢ q, however this implies that both f"~! and f are not in g, so
q € Us. Now suppose that q € Uy, then f ¢ q, so f? ¢ q. Assume that f™ ¢ q, then f"*1 = f*. f ¢ q,
so f™ ¢ q by induction. This then implies a).

Suppose that Uy C Uy, then we have that:
V() cV(g)* = V(f) > V(g)

It follows from Lemma 1.1.1 that /(f) C +/{g). Suppose that /(f) C +/(g), then again from

Lemma 1.1.1, we have that V(g) C V(f), taking compliments we thus have shown b).

For ¢), we see that if Uy C Uy, then \/(f) C \/(g), implying that f € 1/(g), so there exists some
m € Z™7, and some r € R such that f™ =r-g. Conversely, if we have that f™ = r - g, then we have that
f € +/{()g). So suppose that a € \/(f), then a* = p- f for some k € ZT, and some p € R. It follows
that:

(@)™ =p™-fm =" r)-g €9
so \/(f) C \/(g), and by b) we have that Uy C U, implying c). O
We now want to show that each Uy is actually homeomorphic to Spec of some ring. We begin with

the following definition:

Definition 1.1.4. Let A be a commutative ring, S be a multiplicatively closed set, then the localization
of A by S, denoted S~'A, is a ring equipped with a morphism 7 : A — S~'A, such that for all s € S
7(s) is invertible in S~1A, and for any homomorphism ¢ : A — B where ¢(s) is a unit for all s € S,
there exists a unique homomorphism 6 : S~'A — B such that the following diagram commutes:



1.1. SPEC OF A RING 6

S—1A

Our first goal is to show that such a ring exists.

Proposition 1.1.2. Let A be a ring, and S be a multiplicatively closed set. Then S™'A exists, and is
unique up to unique isomorphism.

Proof. We define an equivalence relation on the set A x S by:
(a,8) ~ (b,t) <= Fu € S, u(at — sb) =0

It is clear that this relation is symmetric, reflexive, and with some work transitive, hence it it indeed
defines an equivalence relation. We claim that A x S/ ~ has the structure of a ring. We define addition
by:

[a, s] 4 [b,t] = [at + bs, ts]
We check that this well defined. Suppose that [f,v] = [a, s], then we need to show that:
[ft + bv, tv] = [at + bs, ts]
so we need to find a u such that:
u(fts + buts — at®v + btsv) = u(ft?s — at?v) = 0
Note that there exists a w such that w(fs — av) = 0, hence with v = w we have that:
w(ft*s — at?v) = t*(w[fs —av]) =t*-0=0

so addition is well defined. It is then clear that for any s, the zero element is given by [0, s], and that
any [a, s], has inverse given by [—a, s], so A x S/ ~ is an abelian group. We define a ring structure on
A x S/ ~ by:

[a, s] - [b, t] = [ab, st]
We again wish to check that this well defined, so let [f, v] = [a, s], then:
[f5 0] - [b,t] = [fb, vt]
We again want to find a u such that:
u- (fbst — abvt) =0
Let u = w, then we have that:
wfbst — wabvt = bt(wfs — wav) =0

so multiplication is well defined. It is then clear that the multiplicative identity is given by [1,1] which
is then clearly equivalent to [s, s] for any s € S.

Let the map 7 : A — A x S/ ~ be given by:
ar— [a,1]
This is then clearly a ring homomorphism, and we see that for:

fom=¢
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we must have that:

0([a,1]) = ¢(a)
for all @ € A. We thus define 6 by:

0([a, s]) = p(a) - ¢(s) ™"

where ¢(s)~! exists, as ¢(S) is a set of units in B. This uniquely determines #, so long as it is well
defined. We check that this well defined, let [a, s] = [f, v], then wav = wfs, so we have that:

P(w) - ¢(a) - ¢(v) = ¢(w) - o(f) - P(s)

Since ¢(w), ¢(s), #(v) are all units, we then have that by multiplying both sides by ¢(w)~1, ¢(s)~!, and
¢(v71):

0([a, sD¢(a) - &(s)™" = &(f) - ¢(v) ™" = O([f,v])

To see this is a ring homomorphism, we note that:

0([a. s]) + ([, t]) = p(a)(s) " + (b) - o)~

while:

0([at + bs, st]) = d(at +bs) - d(st) ™" = ¢(a) - &(s) ™" + 4(b) - $(t) "

so 0 respects addition. Moreover,

0([a. s]) - 0([b,t]) = d(a) - 6(b) - ¢(s) " - B(t) ™!

while:

0([ab, st]) = p(ab)d(st) ™" = ¢(a) - H(b) - ¢(s) ™" - p(t) "

so 0 respects multiplication as well, and is thus a ring homomorphism such that 8 om = ¢. It follows that
A x S/ ~ satisfies Definition 1.1.4, and so S~ A exists, and is unique up to unique isomorphism as it is
defined by a universal property". O

Note that the localization of A by S is easily seen to mimic multiplication and addition of fractions,
it is for the purpose that going forward we denote the equivalence classes [a, s] by:

@
Moreover, if f € A, we denote by Ay the localization of A by the multiplicatively closed subset

{1, f,f%,...}, and if p is a prime ideal of A, we denote by A, the localization of A by the multiplicatively
closed subset (A — p). Moreover, Ay can be thought of as the polynomial ring:

Ay = AlL/f]
We have the following lemma:

Lemma 1.1.4. Let A be a commutative ring, and f,g € A, then there exist unique isomorphisms:

(Af)g = Agg = (Ag)s
where in the first and third terms g and f are really the equivalence classes g/1 and f/1. Moreover, if
V{g) = \/{f), then there exists a unique isomorphism:
A=A,

INote that 7(S) is a set of units in S~1A, so one can apply the universal property to any other object satisfying said
property and get a unique isomorphism between the two.
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Proof. Clearly we need only prove that (Af), = Ay,, as the proof of the other isomorphism will be
identical. We first note that the map the natural map 7, : A = Ay, maps:

/
— =
/ 1

This is clearly a unit in Af, where (f/1)~! is given by g/fg. It follows that there exists a unique map
w: Ay — Ayg given by:

k

a g"  ag®

Ix frgk — frgk
Now suppose that ¢ : Ay — B is any map such that g/1 is a unit in B, we want to show that there exists
a unique map 6 : Ay, — B such that:

a
1

fow=2¢
However, note that:

woms(a) ="
SO:

(JJO’]Tf:ﬂ'fg

Moreover, we obtain a unique map % : A — B such that both f and g are units in B, defined by:

Y=¢omy
We thus have the following diagram:
A
o ¥
| Ag LB
w e
Afg

where 6 is the unique homomorphism such that 6 o 7y, = 1. We need to check that 6 satisfies:
Qow=¢
Let f% € Ay, then by definition we have that:
$la/f*) = p(a) - ()~
Meanwhile:
0 ow(a/f*) = 0(ag®/(g"[*)) = P(ag") - w(g"f*) " = ¥(a) - o (f*) "

so ¢ is the unique map which satisfies § o w = ¢. It follows that Ay, satisfies the universal property of
the localization of Ay by g/1, then (Ay), is uniquely isomorphic to Ayg,.

Note that if \/{f) = 1/(g), then there exists elements u,v € A and m,n > 0 such that:

M =ug and gt =vf
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It follows that m,(f) is a unit in A, and that 7¢(g) is a unit in Ay with inverses given by v/¢"” and u/f™
respectively. We thus have the following commutative diagram:

A = A
Of
Tf
99
Ay
Let a/f* € Ay, then:
k
av
eg(a/fk) =~k
g
and then:
avk,unk

O 0 0y(a/f*) = ke
so we need to find a K such that:
FE (avbum® gh — frkmgy —
However we see that:
avkul R = qgnkynk — g prkm

so K = 0 will do, and we see that 0y o, = Id. The same argument shows that 6,060y =1d, so Ay = A,
are isomorphic as desired. O

Proposition 1.1.3. Let A be a commutative ring, and f € A, then the distinguished open set Uy is
homeomorphic to Spec Ay.

Proof. We have a ring homomorphism 7 : A — Ay, which induces a continuous map % : Spec Ay —
Spec A. We first want to show that im¢ = Uy. Suppose that p € im ), then p is of the form 7~ (q) for
some ¢ € Spec A¢. Note that:

7 Hq) ={a€A:n(a) €q}

If f € 7=1(q), then we have that 7(f) = f/1 € q, implying that 1 € q so it follows that that f ¢ 7—1(q),
hence p € Uy. Now suppose that p € Uy, we want to show that there exists a prime ideal q € Ay such
that 7=1(q) = p. Define q by:

q{;’keAf;pep,kzo}

We see that this is an ideal, —p € p, 0 € p, and for any b/ f™ € Ay, we have that fmtk e 8 and pb € p,
hence bp/(f**t™) € q. It is prime as if:

_— — G q
[ fm
then we have that:
ab  p
fhtm - f7

for some p € p an n > 0. This implies that there exists a j > 0 such that:

f(abf™ = pf*m) =0
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We then see that:
ab it = pfttm

implying that abf/*™ € p. We have that fi*" ¢ p, so ab € p, implying either a or b is in p, so q is a
prime ideal. It is then clear that:

T (a) =p
as if a € 771(q), then we have that a/1 € g, so:
a_p k _
I—ﬁzaf =p

so a € p. If a € p, then we have a/1 € q, and 7(a) = a/1, so a € 7 1(q).

The map ) is then a continuos surjection onto it’s image by definition, so we define an inverse map
n: Ur — Spec Ay, by:

p
n(p):{fkeAf:pep,kzo}
which as we have just shown is a prime ideal in Ay. We check that these are inverses, let p € Uy, then
our argument showing that im = U; demonstrates:

Yon(p)=p
Now suppose that q € Spec Ay, we have that:
noula) =nin @) = { e 4sipen @z 0} i1

Let p/f* € q, then p/1 € q, so p € 7~1(q). It follows that p/f* € I. Now suppose that p/f* € I, then
p € mY(q), so p/1 € q, hence p/f* € q. It follows that I = p, the two are inverses of one another.

We need to show that 7 is continuous, it suffices to check that on basis open sets. First note that
Ua/pe = Uay1 C Spec Ay, as if q € Uy/px, then we have that a/f¥ ¢ q. Since f/1 ¢ q, we have that
a/f¥- f¥=a/1 ¢ q, hence q € Ua/1- Moreover, if q € Uy /1, then a/1 ¢ q, and since f ¢ q, we have that
a-1/fF¢q,50q¢€ Uqygx- It thus suffices to check this on distinguished opens of the form U, for some
g/1 € Ay. We see that:

0 (Ug) = {p € Uy :n(p) € Uy}
We claim that:
nYUy) =Uysg =Us NU, C Spec A

and would thus be open in the subspace topology on Uy. Let p € Uy, then p € Uy NUy, so neither g nor
f lie in p. Now, we see that:

n(p)z{fk:pep,kEO}

Since g ¢ p, it follows that g/1 ¢ n(p), hence n(p) € U, C Ay. If p € n=1(Uy,), then we have that
g/1 ¢ n(p), implying that g € p, so p € Uy NU,; = Uy,y. It follows that 7 is a continuous map, and in
particular, the inverse 1, hence Uy is homeomorphic to Spec A, as desired. O]

1.2 Some Category Theory: Sheaves, Stalks, Germs, and all
that

In this section we go over the basics of sheaf theory, and attempt to take a categorical approach wherever
possible. We begin by fixing a topological space X, and a category denoted %’x, who’s objects are open
sets of X, and morphisms are inclusion maps LE : U — V, whenever U C V. Note that this puts a partial
order on €x, where U <V < U D V>

2The reason for the reverse inclusion is to due the contravariant nature of a presheaf/sheaf.
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Definition 1.2.1. A pre sheaf is a contravariant functor % : ¥x — D where D is generally one of
the following categories: Set, Ab, or Ring’. We call the object .Z (U) sections over U, and the induced
maps 0 : #(V) — F(U), the restriction maps. A sheaf, is then presheaf such that:

i) Let U; be an open cover for U, then if s,t € .F(U) such that 0 (s) = 0f (t) for all i, then s = t.
i7) If U; is an open cover of U, and there exists s; € .#(U;) such that:

U, U
‘9UmUj (si) = onnt (s5)

for all i and j, then there exists a section s € .7 (U) such that 6 (s) = s;.

We have the following example:

Example 1.2.1. If X is a topological space, then let % = C° assign to each open set of X the ring of
continuous real valued functions. This obviously defines a presheaf on X, where the restriction maps are
given by f € C°(V) — fou; € C°(U). Now suppose that U; is an open cover of U, and fOng = 0 for all
U;. Well this implies that f(p) = 0forall p € U, as all p € U lie in U; for some ¢, and foagi (p) =0= f(p)
by definition, so sheaf axiom one is satisfied*. Now suppose that U; covers U, and f; € C°(U;) satisfy
fo ngnt = fjo LgimUj. We define a map f by:

f(p) = fi(p)

when p € U;. If p € U; N Uj, then since f; and f; agree on the overlap we have that f; = f;. We show
that this is continuous, Let W C R be open, then

fTW)={peU: f(p) e W}
:U{p e U, : fi(p) S W}

:Ufi_l(W)

however, each f; is continuos, hence f € C°(U), and satisfies 95@ (f) = fi

Example 1.2.2. Let X be a smooth manifold. A similar argument shows that the contravariant functor
F = C%, which assigns to each open set of X the ring of smooth functions C*°(U), is a sheaf. Moreover
though, if £ — X is a smooth vector bundle over X, then the .# = I', which is the functor that assigns
to each open set of X the ring of smooth local sections of E is also a sheaf. Indeed, the restriction
maps are just composition of with the inclusions, and sheaf axiom one is satisfied in the same as in
Example 1.2.1. Now suppose that U; is an open cover of U, and ¢; € T'(U;) are smooth sections such
that OViU; NU;(¢;) = 0YiU; NU;(¢;). We let 1; be a partition of unity subordinate to the open cover
U;, then we see that:

¢ = VYid; VxeU;
‘o Ve ¢ U;

defines an element &; € I'(U). We define ¢ € I'(U) by:
¢ = Z &

Then this satisfies Hgk (¢) = ¢k, as for all p € Uy, we have that for some n:

dp)= > wi(p)fbi(p)zzwj(p)aﬁj(p)

2:U;NUL#£D

since all ¢; agree with ¢, on U; N Uy, and p € Uy, this becomes:

o(p) = b1 (p) - Z ¥ (p) = ér(p)

as a partition of unity always sums to one. It follows that ¢ o Lgk = ¢y, as desired, so I is a sheaf.

3By Ring we always mean commutative rings.
41If addition is well defined, and a group operation in the objects of your target category, sheaf axiom one is equivalent
to the case where s restricted U; is zero for all ¢ implies that s is zero.
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In the case where are sheafs are literally rings/groups of maps to another topological or smooth space,
the sheaf axioms encode a sort of locality condition that mimics continuity, and smoothness. When we
turn to studying schemes, and locally ringed spaces in generality, it will be good to keep this picture in
mind. At times we write s|y, for 0);(s) when it is understood that s € .Z (V).

Definition 1.2.2. Let X be a topological space, and .% : €x — D a pre sheaf, the stalk of % at z € X,
denoted .%, is an object in D satisfying the following conditions:

a) For all U C V where x € U and V, there exist morphisms ¢y : Z(U) — Z, v : F(V) - F,
such that the following diagram commutes:

\%4

FV) — % gw
N4
T

b) If G is another object in D, equipped with morphisms ¢y : F(U) — G, ¢y : F(V) — G for U,V
where x € U, V, such that a similar diagram commutes, then there exists a unique map ¢, : %, — G
such that the following diagram commutes:

)

F(V) 0y — F(U)

AN /
Py Yu
NS
ov Tz du
|
G

The astute will notice that this definition is equivalent to the definition of the colimit, or direct limit.
In other words, we have that:

Elements of .%, are called germs

J—

F, = lim Z(U)

x

<
w

As always, when defining something by a universal property, it is important to check that such an object
exists.

Proposition 1.2.1. Let X be a topological space, and F a presheaf, then for all x € X the stalk F,
exists.

Proof. We work in the category D = Ring, as the proof in this case will imply the others. Define .7, as
the following set:

F={U,s):xe€Usec F{U)}
modulo the equivalence relation
U, s) ~ (V1)
if and only there exists a W € U NV such that z € W and:
slw = tlw
One easily checks that this is indeed an equivalence relation on F', thus we set:

T =F| ~
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We first check that %, is indeed a ring. We define addition on %, by:
(U, s]+ [V.t] = [UNV,sluny + tlunv]
We need to check that this well defined. Suppose that [Z, f] = [U, s], then we need to show that:
[Z NV, s|zav +tzav] = [UNV,sluav + tluav]

Well, consider W = UNZNV, and note that by the functorial properties of the restriction maps we have
that:

(slznv + tlzav)lw = slw + tlw = (slvav + tlunv)|lw

so addition is well defined. Moreover the zero element is given by [U, 0] for any open set U which contains
z. Indeed, we have clearly have that:

[U,0]+ [V,s] = [UNV,slunv] = [V, 9]

The inverse of any element [U, s] is then easily seen to be [U, —s], so .%, is indeed an abelian group. We
define a ring structure in the same:

U,s|-[V,t] = [UNV,sluav - tlunv]

and the same argument demonstrates that this well defined, and that [U, 1] is the multiplicative identity
of %#,, so F, is a ring.

For all open sets U, we define a map ¢y : #(U) — %, by:
s+— [U, s]
Let VNU, and 69 : #(U) — Z (V) be the restriction map, then we have that:
Yy 00y (s) = [V, slv]
However, we see that U NV =V, so tautologically we have that:
U, s] = [V, sv]

it follows that property a) of Definition 1.2.2 is satisfied. Now suppose that for all open U we have ring
homomorphisms ¢y : .Z(U) — G, such that ¢y = ¢y o 0Y, then we see that if ¢, : F, — G exists it
must satisfy:

@z 0 wU = ¢y
so we define ¢, by:
¢=([U, 5]) = du(s) (1.2.1)

We need to check that this well defined; let [U, s] = [V,], then there exists a W C U NV such that
slw = t|lw. It follows that:

ow (slw) = ow (tlw)
however:
dw (slw) = du(s)
and:
ow (tlw) = ov (?)

s0 ¢y (s) = ¢y (t) hence ¢, ([U, s]) = ¢, ([V,t]). We check that ¢, is a ring homomorphism, let [U, s] and
[V.t] € #,, then:

¢ ([U, s] + [V, t]) = dunv (sluav + tlunv)
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while:

¢2([U, s]) + 0o ([V,t]) = ou(s) + ov(t) = dunv (slunv) + dvnv (tlunv)

so by the fact ¢yny is a ring homomorphism, we have that ¢, respects addition. The same argument
shows that ¢, respects multiplication, and sends 0 and 1 to 0 and 1 respectively so ¢, is a ring homo-
morphism. It is unique, as any other ring homomorphism that makes the diagram in b) commute must
satisfy (1.1). It follows that F'/ ~ satisfies the properties of Definition 1.2.2) so %, exists and is unique
up to unique isomorphism. O

Definition 1.2.3. Let X be a topological space, and &% and ¥ be sheaves (pre sheaves) on X. A
morphism of (pre) sheaves is a natural transformation F' : . — ¢. In particular, the a morphism of
(pre) sheaves is a family of morphisms Fyy : #(U) — ¢(U) such that the following diagram commutes:

FU) — 5 g(U)

A isomorphism of sheaves (presheaves) is a natural transformation in which every morphism Fy; is
an isomorphism. We denote the category of presheaves on X by PSh(X).

Lemma 1.2.1. Let F': % — & be a morphism of presheaves or sheaves, then there exists a unique map
on stalks Fp : T — 9,.

Proof. Clearly, we need only define maps ¢y : F(U) — 9, satisfying ¢y = ¢y 06Y, then by the universal
property of the colimit, we will have a unique map F,. We define ¢y by:

pu(s) = [U, Fu(s)]
We see that this is clearly a ring homomorphism by our previous work, and that:
ov(slv) = [V, Fv (slo)] = [V, Fu(s)lv] = [U, Fis)]
implying the claim. O
Note that we have that:
o ([U,s]) = U, Fu(s)]

If s € Z(U), we often denotes its image in .%#, as s,. Moreover, if it is not understood which stalk [U, s]
belongs to, we write [U, s],. Importantly this lemma implies the following:

Corollary 1.2.1. Let F: % — ¥ and G : 4 — S be morphisms of (pre) sheaves, then for all x € X :
(GoF)y=G,oF,

Proof. We have that G o F is a morphism % — 5, so there exists a unique map (G o F), : %, — 4,
such that:

(GoF)u([U,s]) = [U,(Go F)y(s)] = [U,Gu o Fy(s)] = Go([U, Fu(s))) = Gz 0 Fo([U, 5])
implying the claim. O
Lemma 1.2.2. If % is a sheaf, then the natural homomorphism:

FU) — [] Z.
xeU
s+ (8z)

1S injective.
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Proof. Suppose that s,t € . (U) and (s;) = (t5). Then for each x we have that:
[U,sle = [U,1]a
implying that there exists W, C U such that:
slw, = tlw,
We then obtain an open cover {W, } of U such that s|y, = t|w,, so sheaf axiom one implies the claim. O

Proposition 1.2.2. Let F': .% — 4 be a morphism of sheaves on X , then F is an isomorphism if and
only if F, : F, — 9, is an isomorphism for all x € X .

Proof. If F : . — ¢ is an isomorphism, the there exists an inverse natural transformation given F~! :
F — 9. Let [U,s] € Z,, then:

F_IOFI([UvS]):Fm_l([UvFU(s)]):[UvFljloFU(s)] = [U’s]

x

Similarly if [U, s] € ¢,., then we have that:
Fyo FY([U.s]) = [U, 5]

so we have that F, is an isomorphism.

For the converse, note that since the target category of our functors .# and ¥ is either Set, Ab, or
Ring, it suffices to check that Fy is injective and surjective for all U. Note that we get an induced
isomorphism:

H%-ﬂ‘[%

zeU zeU
(s2) — (Fu(sa)) (1.2.2)

as F, is an isomorphism for all . Suppose that Fy(s) = Fy(t), then we have that by definition of the
stalk map (Fy(s))s = Fyp(sy) = Fp(tz) = (Fu(t)), for all z € U. Since Fy(sy) = Fy(tz) for all U, we
have that (s;) = (t;) so by Lemma 1.2.2 Fy is injective.

Now let g € 4(U), then by the isomorphism (1.2), we have that there exists a unique sequence
(52) € [I,er Fo such that (Fp(sz)) = (92). Write [V, f*], for each s, in the sequence, and without loss
of generality let V, C U°. Then note that:

Fo([Va, £712) = [Va, Fv, (f)]2 = [U, 9l

so there exists a W, C V, such that Fy, (f*)|lw, = glw,. Cover U by {W,}, then we have sections
f*lw, € F(W,). We see that:

Fw,ow, (flw.ow,) = glw.aw, = Fw,aw, (f¥lw.nw,)
and since F' is injective, it follows that:
[ lwerw, = flw.nw,
so we have a global section f € #(U) by sheaf axiom two. We see that:
Fy(Nlw, = Fw, (flw.) = Fw, (f*lw.) = glw.

so by sheaf axiom one Fy(f) = g, implying that Fy is surjective for all U, and thus F' is a natural
isomorphism as desired. O

One can easily check that presheaves with values in Ab form an abelian category, as one easily define
the kernel and cokernel of a presheaf morphism to be the functor on X that takes U to ker Fyy and
coker Fyy. This does not work with sheaves, however there is a workaround.

5We can always further restrict to U NV, to make this true.
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Definition 1.2.4. Let .# be a presheaf on X, then sheafification of .%, denoted .Z¥, is the a sheaf
equipped with a morphism sh : .% — %%, such that for all morphisms ¢ : . — ¢, where ¢ is a sheaf,
then there exists a unique morphism ¢* : .#* — & such that the following diagram commutes:

F —0— Y
| e
sh of
e

Ft

As always, we check that such a construction exists, and is thus unique up to unique isomorphism.

Proposition 1.2.3. Let . be a presheaf on X, then the sheafification of F* exists.

Proof. We define .%#* on open sets by:

FHU) = {(sx) € Hﬂ} :VpeU,3V, CU, and a f € #(V},),such that fq:sq,VqGVm}
zeU

All this is saying, is that for each p € U, we can find an open neighborhood of p, and a section on that
open neighborhood such that the germ of that section at every point agrees with s,. With that in mind,
we quickly check that this is a subring of [, -#,. Clearly, & #(U) contains the zero section and the
multiplicative identity. Moreover, if (s,) € .F*#(U), then it’s inverse (—s,) € F*(U), as we just take —f
to cover (—s;) for each V,, C U. It is closed under addition, and multiplication as if (s.), (t.) € Z*(U),
then we have that:

(82) + (tz) = (52 + ta) and (82) - (tz) = (82 tz)

Let p € U, then there exists W), Z,, s* € #(W,) and t¥ € F(Z,) such that si = s, and t} = ¢, for all
g € W, and Z, respectively. We then see that:

(sPlw,nz, +t|lw,nz,)q = (8¢) + (tq) = (5q +1q)

and similarly for multiplication. It follows that for all p there exists sections on small enough neighbor-
hoods that agree with addition or multiplication of two elements in .Z*(U), so .##(U) is a subring of
[I.cv Z=, and thus a ring.

We check that U +— .##(U) is a contravariant functor. Define restriction maps 8% in the obvious way:

0 [ Z — [[ #-

zecU zeV
(52) = (s2)

which is clearly a ring homomorphism, as we essentially just toss out the elements in the (s,) where
x €¢ U. Restricting the restriction maps to ##(U), it is clear that 6 has image in Z*(V) as restricting
sections commutes with the map from sections to stalks. It is then clear that:

0 =1d and 6y, 0 65 = 6%,

so .Z! is a presheaf.

To see that .Z* is a sheaf, let {U;} be an open cover of U, and (s,) € .Z*(U) such that (s,)|y, = 0.
Then clearly by the definition of the restriction map, s, = 0 for all x € U, so (s;) = 0 and sheaf axiom
one is satisfied. Now suppose that we have sections (s%) € .Z#(U;) such that (s?) vinu, = (2)|vinu, s
then we define a section (s,) € F#(U) by: ' '

(52) = (s5)

whenever z € U;. If x € U; N Uy, then since (s%)|v,nu, = (s2)|v,nu, implies that for all p € U; N U; we
have s}, = sJ, it is clear that this assignment is well defined. Moreover, (s;) lies in F#(U), as for all
p € U, there exists a U; such that p € U;, and (s.) € F4(U;) with si = s, for all x € U;, so there must



1.2. SOME CATEGORY THEORY: SHEAVES, STALKS, GERMS, AND ALL THAT 17

exist a section f on each open neighborhood of « € U; such that f;, = sé = 54, hence (s;) € FHU).

Moreover, we have that by construction (s,)|y, = (s.). It follows that .#* is a sheaf.
We define the natural transformation sh : .#% — Z¥ by:
shy : Z(U) — ZFU)

s+— (8z)

which has image in Z¥ essentially by construction, i.e. take V,, = U for all p € U, then s € .Z (U) satisfies
5q = sq tautologically. Moreover, this clearly commutes with restriction maps, and is thus a natural
transformation.

We construct the natural transformation ¢* for all U as follows; let (s,) € .Z*(U) then for all p € U
there exists V,, and f? € .#(V},) such that [V,, f?]; = s, for all ¢ € V,,. We thus obtain an open cover U
by {V,} and section ¢y, (f?) € 4(V,). Now consider overlaps W =V, NV, then:

ov, (f9)lw = ow (f*|w)
By the universal property of the colimit, we have a unique map ¢4 : F#, — ¢ for all ¢ such that:
0q(fg) = Var, &v. (f)lq = W, ow (f*Iw)lg = (0w (F7|w))q
However, for all ¢ € W, we have that f' = f¥, hence:
(ow (f*lw))g = ¢q(f5) = 0q(f]) = (dw (fYIw))
implying that:
(Pv. (F)lw)g = (@v, (f)Iw)q

for all ¢ € W. However, 4 is a sheaf, so by Lemma 1.2.2, we have that ¢y, (f*)|lw = ¢v, (fY)|lw. So by

sheaf axiom two, the ¢y, (f*) glue together to form a unique global section g € 4 (U). We thus define qﬁ?]
by:

¢ ((s2)) = g

This is well defined, since if we had some other set of functions on e” on some other open cover Zp,
repeating the same process yields a section h € 4(U). For all ¢ € U, we then have that:

hq = ¢q(5q) = Yq

so by Lemma 1.2.2, it follows that g = h. This is clearly a ring homomorphism as if (s,), (t,) € .F*(U),
then we have that:

O (s2) + 0 (tz) = g +
where g = ¢§J(sx) and h = ¢§J(tz). Now suppose that:
O (sx + 1) = f
for some f € 4(U). Then we have that:
fa = 0q(sq +tq) = Pq(5q) + 4(tg) = gg + hg = (9 + h)q
Since this holds for all ¢, we have again by Lemma 1.2.2 that:
O (5 + 12) = 0 (50) + 8 (t2)

The same argument shows that (;5%] respects multiplication.

Finally, we check that that ¢f osh = ¢. Let s € .Z(U), then shy(s) = (s;). Since ¢? is independent
of the choice of cover we use to obtain a section, chose the trivial cover U with s € .% (U), then we have
clearly have that:

9% o shu(s) = dul(s)

so .Z! satisfies the universal property, implying the claim. O
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Importantly if .% is already a sheaf, we have that .#*¥ is uniquely isomorphic to .%.

Lemma 1.2.3. Suppose that . is a sheaf, then F = F*

Proof. We simply check that %, Id satisfies the universal property of sheafification. Let ¢ by a morphism
F — ¢, then we have the following diagram:

9#%

1d
Nt

F

Clearly, for this diagram to commute we must have that ¢f = ¢, but that morphism exists, and is unique
so .7 ,1d satisfies the universal property of sheafification and is thus uniquely isomorphic to .Z*. O

Lemma 1.2.4. Suppose that % and 4 are presheaves, and ¢ : F — 4 a morphism between them. Then
there exists unique isomorphisms shy : F4 — f)}, shy : ¥, — %qﬁ“, such that ¢g oshy = shg 0¢,.

Proof. We have the following commutative diagram:

g

F
N sh
(25% shog
S

sh

So there exists a unique morphism (¢)* such that the following diagram commutes:

F— gt

N sh

&4 n @+

It follows that shog = ¢* o sh, so we need only show that the unique map sh, : %, — ﬂg is an
isomorphism. We have that:

shy([U, s]) = [U,shu ()] = [U, (s2)]
Suppose that shy([U, s]) = shq([V,t]), then we have that there exists a W 5 ¢ C U NV, such that:
(sa)lw = (ta)lw

implying that for all € W s, = ¢,. Since ¢ € W, it follows that s, = t, so [U,s] = [U,t]. Now let
U, (sz)] € 93, and take (s,) € Z¥(U). It follows that there exists an open neighborhood V; of ¢, and a
section f € % (U) such that f, = s, for z € V. We see that:

ShQ([anf]) = [Vz7 (fa:)] = [Va:a (Sw)lvw] = [U’ (Sw)]

so sh, is surjective. It follows that sh, is an isomorphism, as the %, and 95 are either sets, groups, or
rings. O

6 Abuse of notation alert! We are using the same notation to refer to two different sheafification map.
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Example 1.2.3. Let X be a topological space, and denote by Z the constant presheaf which assigns to
each open non empty set the abelian group Z, and to () the trivial group. The restriction maps are either
the identity, or the trivial morphism. This is not necessarily a sheaf, as if U open is the disjoint union
of two open sets Uy, Us, then we have that s € Z(U;), and ¢ € Z(Us) , such that s # ¢, it follows that
slu,nu, = tlu,nu,, but clearly s and ¢ can’t glue together to form a section of U restricting to s and .

We want to find the sheafification of Z. Define Z* by:
7*(U) = {locally constant functions s : U — Z}

i.e. if U is connected then s : U — Z is a constant function, and if U is disconnected then s is constant
on each connected component. The restriction maps are just the restriction of the function s to a smaller
domain. This is then clearly a sheaf, as if U; is a cover for U, and each s|y, = 0, then at each point in U
s(p) = 0so s = 0. Moreover, if we have s; € U; such that s; U;nu;, then the same construction
in Example 1.2.1 gives a section on U that restricts to s;.

U;NU; = S]‘

We need only show that Z* satisfies the universal property of sheafification. Define sh on each open
set by:

shy(a) = s,

where s, : U — Z is the constant function s,(p) = a. This clearly commutes with restriction maps, hence
defines a natural transformation Z — Z!. Let ¢ : Z — ¢ be any morphism, where ¢ is a sheaf. We see
that ¢f must satisfy:

¢f osh =0

Let s € Z*(U), then note that s~1(a) is open in U as s is locally constant. Indeed, if s is locally constant,
then for each z € U there exists an open neighborhood of z such that s is constant. The preimage
s71(a) is then the union of all such open neighborhoods which is certainly open. Moreover, we see that
s a) N s~(b) = 0 for all @ # b, and that {s7!(a)}.ez forms an open cover of U. For each a € Z, we
choose the section a € Z(s7!(a)), and then see that:

Ds—1(a) (@) |s=1(a)ns=1(6) = Ps=1(6) ()] s=1(a)ns-1 (1)

as the restrictions map to the empty set. It follows that since ¢,-1(4)(a) glue together to give a global
section g € 4(U). We thus define ¢* by:

#(s) =g
We thus see that if a € Z(U), then sh(a) = s,:
¢ (sa) = ¢(a)

as s;'(a) = U. Tt follows that ¢# is unique, and well defined by the same argument in Proposition 1.2.3,
so Z! is the sheafification of Z. Going forward, we call Z* the constant sheaf with values in Z’, and
denote by Z.

We now go out of our way to explicitly explain the kernel sheaf, cokernel, sheaf, and the image sheaf.
We work entirely with sheafs of abelian groups, though similar objects can be defined in the category
of rings, the resulting sheafs just don’t necessarily stay in the category of rings. The zero sheaf, will be
denoted by 0, and is the sheaf that sends every open set to the trivial group, and the trivial transformation
will be denote 0.

Definition 1.2.5. Let F': # — ¢ be a morphism of sheafs, then the kernel sheaf, denoted (ker F) ) is
a sheaf equipped with a natural transformation ¢ : ker F' — .% such that For =0, and for all ¢ : 2 — F
such that F o1 = 0, there exists a unique 0 : 7 — ker.# such that the following diagram commutes:

\\\)\ /
ker F'

"We can also use the same construction to obtain the constant sheaf with values in any set, abelian group, or ring
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Proposition 1.2.4. Let F : F — ¢ be a sheaf morphism, then ker F' exists and is unique up to unique
isomorphism.
Proof. We define ker F' by:

(ker F)(U) = ker Fy

This is easily seen to be a presheaf. We check that it is a sheaf. Let U; cover U, and s € ker Fy such that
sly, = 0. However, each s|y, € ker Fy;, C % (U;), and s € ker Fiy C .#(U) hence s = 0. Now suppose we
have s; € ker Fy;, such that:

Si UiﬁU]‘ = Sj UimU]'

These glue together to form an s € #(U), however we need to check that s € ker Fi;. Note that:
Fy(s)lu, = Fu,(slv,) =0

and since ¢ is a sheaf we have that F(s) =0, so s € ker Fyy. It follows that ker F' is a sheaf.

Define ¢ : ker FF — % by ty(s) = s, i.e. ¢y is just the natural inclusion of abelian groups. It is clear
that ¢pov = 0. Let ¢ : S — % be a morphism such that F' o1 = 0, then we need a morphism 6 such
that for all U :

gy o0y =Yy

We note that since ¢y o ¥y = 0, so ¥y has in ker F;. We thus define:

O (s) = u(s)

with restricted target. This is readily seen to be a natural transformation, and is unique and well defined,
hence ker F' satisfies the universal property of a sheaf kernel. It follows that ker F' is unique up to unique
isomorphism, implying the claim. O

We have a similar definition for the cokernel, but with arrows reversed:

Definition 1.2.6. Let F : % — ¢ be a sheaf morphism, then the sheaf cokernel, denoted (coker F, 7)
is a sheaf equipped with a morphism 7 : 4 — coker F', such that w o F' = 0, and for all morphisms
Y 9 — H such that ¢ o F = 0, there exists a unique morphism 6 : coker F — 5 such that the
following diagram commutes:

coker F’

Proposition 1.2.5. Let F': .F — % be a sheaf morphism, then the sheaf cokernel (coker F,7) exists and
18 unique up to unique isomorphism.

Proof. Note that in the category of abelian groups, the cokernel of Fy is given by:
g(U)/ im FU

Using this assignment as the cokernel is problematic, as coker F' will then fail be to a sheaf. In particular,
the gluing property does not always hold. We thus define the presheaf:

coker? F' : U — coker Fyy = ¥4 (U)/im Fy

with 7?7 to be the natural transformation defined as the projection map 4(U) — ¢4 (U)/im Fy for all U,
and define the cokernel sheaf to be:

coker.Z = (coker? F)*
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with m# = shon?. Suppose that coker? F' satisfies the universal property of the cokernel in the category
of presheaves, then for all morphisms 1 : 4 — ¢, we obtain the following commutative diagram by the
universal property of sheafification:

m//’o\%
g\ﬂp 9/ ;E
N |

coker? F' sh — coker I

It would then follow that (coker F,7) satisfies the universal property of cokernels in the category of
sheaves. We now show that coker? is a presheaf, and 7P is a natural transformation. First note that for
all U C V we have the following diagram:

¢U) 0y g(V)
| |
L !

Note that 7}, 0 8 is a morphism ¢ (U) — ¢(V)/im Fy. Suppose that g € im Fyy, then g = Fy/(s) for
some s € #(U), and we see that

0 0y (Fu(s)) =y (Fy (slv)) = 0

so imFy C ker@Y o wl,. It follows that there exists a unique map which we also denote by 6% :
Y (U)/im Fy — ¢(V)/im Fy, such that the following diagram commutes:

9U) 0y g(V)

P P
U Ty

! !

%(U)/lmFU 05 Em— %(V)/lmF\/

This implies that if coker? is a presheaf, then 77, is a natural transformation. We need to check that
0F = 1d. Examine the diagram:

G(U) 0y 9(U)

P
U

! !

Y(U)/im Fy 0 —— 9 (U)/im Fy

The top 6Y is the identity, so the only way for the bottom 6Y to make the diagram commute is for
0F =1d as well. We need to show that 0, o 9 = 0Y,; examine the diagram:

“(U)/im Fy 0y —— 4 (V)/im Fy oy, —— G(W)/im Fyy
Erase the middle to obtain:
4(U) 0%, g(V)
| |
U w

! !

%(U)/lmFU —— 9} 00Y —— g(W)/lmFW
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Then since 9“,{, o 95 makes this diagram commute, we must have that OXV o F)g = 0%{,, so coker? F' is a
presheaf.

To see that this satisfies the universal property of the presheaf cokernel, let ¢ : 4 — 5 be a morphism
of presheaves such that ¢ o F' = 0, then we want to find a morphism 6 : coker” F' — # such that for all
U:

O o mfy = Yu
We define 0y by:

Ou(lg]) = Yu(9)

and note that this well defined, as if [h] = [g], then we have that h = g + Fy(s) for some s € .Z (U). It
follows that since ¥ o F = 0:

Yu(h) =Yu(g+ Fu(s)) = Yu(g)

It is clear that the assignment U — 60y then defines a natural transformation 6, as 1 is a natural
transformation. It follows that (coker? F,7P) is the cokernel in the category of presheaves, implying that
(coker F,7) is the cokernel in the category of sheaves. O

Corollary 1.2.2. Let F' : % — 4 be a morphism of sheaves. Then (ker F'), = ker F; and (coker F'), =
coker F,

Proof. We first that ¢, : (ker F'), — %, is an inclusion map, so (ker F'), C %#,. It thus suffices to
show that (ker F), = ker F, as both are subgroups of %#,. Let s, € (ker F,), then s, = [U, s] for some
s € ker Fy, it follows that F(s,) = [U, Fu(s)] = [U,0] = 0, so (ker F'), C ker F,,. Now let s, € ker Fy,
and let s, = [U,s] for some s € F(U). It follows that [U, Fy(s)] = [U,0], so there exists a V' such
that Fy(s]y) = 0, hence s|y € ker Fyy. We have that [U,s] = [V,s|y], and [V, s]y] € (ker F),, hence
s € (ker F),, implying equality.

~

For the other statement, we need only show that (coker? F'), = coker F, then since sheafification
provides an isomorphism sh, : (coker” F), — (coker F'), we will have the claim. Note that we have a
map 7 : ¢, — (coker” F'),, which satisfies 72 o F, = 0, so let ¢ : 4, — A be an morphism such that
¢ o F, = 0. Note that for [U, g] € ¢,, we have that:

[U,g] = U, 9]
We thus define a homomorphism 6 : (coker” F'), — A by:

0([U, [91]) = v (U, g])

We need to check that this independent of the choice of g, let [U, [h]] = [U, [g]], then there exists an open
set V' C U, such that:

(Rllv = [gllv = hlv = glv +s

where s € im Fy,. Since 9 itself must be well defined, we have that:

O([U, [n]]) = &([U, h]) = &([V, hlv]) = ¢([V glv] + [V; s]) = o[V, glv]) = ¢((U, g])

It follows that (coker” F), then satisfies the universal property of the cokernel of F,, hence there is a
unique isomorphism (coker? F'),, = coker F,,, and thus a unique isomorphism (coker F'), = coker F.

O

Now that we know kernels and cokernels exist, we wish to show that the category of sheaves of abelian
groups over a topological space X is an abelian category. We need the following terminology:

Definition 1.2.7. A additive category is a category with a 0 object®, finite products and coproducts,
and each set Hom(A, B) for objects A and B has an abelian group structure such that the composition
maps are bilinear.

8A zero object is one that is both an initial and final object in the category, i.e. for every object A there exist unique
morphisms 0 — A (initial), and A — 0 (final)
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Lemma 1.2.5. Let X be a topological space, then the category of sheaves with values in abelian groups
is additive.

Proof. We first note that the trivial sheaf which assigns {0} to each open set is easily seen to be a zero
object.

We define the product of two sheaves ¢ and % to be:
(@ x F)U)=9U) x F(U)

It is clear that this defines a sheaf, and moreover there clearly exist natural formations 7 : 4 x .% — ¢
and 7z : 4 x F — F such that (r¢)y and (72 )y are the natural projections in the category of abelian
groups. Let S be another sheaf with morphisms ¢z : J# — % and ¢y : H# — ¢, then we want to
show that there exists a unique ¢ : € — ¢4 x # such that the following diagram commutes:

H

A

P @

9 : F
/ ﬂg/ \ﬂk(} \
e \
4 F

In the category of abelian groups, we have that iy would be given by:
Yu(h) = (¢g(h), 7 (h))

so assignment U — 1y is the natural transformation which makes the above diagram commute, demon-
strating that % x ¢ is indeed the product. Since the product are coproduct are the same in abelian
groups, it follows that the same argument with the arrows reversed shows that 4 x .# is the coproduct
in the category of sheaves as well.

We have that Hom (% ,9) is the set of all natural transformations .# — 4. We define addition in this
set by:

(¢+v)v = ou + v € Hom(ZF (U),¥9(U))
We see that this is a natural transformation, as:
0y o (¢ +¥)u =0y o (¢u + Yv)
=60y o ¢u + 07y
=¢v 00y + vy o0y
=(¢v +¢v) o by
=(¢+d)v o 0y

So addition makes sense. Note that natural transformation U ~ Oy ”, which we suggestively denote by
0, is the 0 element in this set. Indeed, we have that for all U:

(¢+0)v = du +0u = ¢u
s0 ¢+ 0 = ¢. We see that for any ¢ € Hom(%,¥), we can define —¢ by:
(=P)v = —du
which is clearly a natural transformation by the same argument above. It follows that for all U:

(¢ —@)uv =ov —du =0y

90y being the trivial morphism in Hom(.#(U),¥(U))
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so ¢ — ¢ = 0. We thus see that Hom(#,%) is indeed an abelian group. Let 5# be another sheaf, and
consider Hom(¥, 7¢), we want to show that for all § € Hom(¥, 5¢) we have that:

fo(p+1)=00¢+ 001y € Hom(F, )
We see that 6 o (¢ + ) for all U:
(0o (d+v))u =0uo(d+v)u =0vo(du+hu)="0uody+0uoty=(0od)u+(0o)y

so Qo (p+1) =60o0d+0o0. The same argument in the other direction demonstrates that for all
6 € Hom(s#, .7 ), we have that:

(p+ )0l =000+ 1ol ecHom(H,9)
so composition is bilinear, implying the claim. O

Definition 1.2.8. Let ¢ : A — B be a morphism in an additive category, then ¢ is monomorphism if
forall 0 : Z — A, we have that ¢po = 0 = 6 = 0. A morphism ¢ is an epimorphism if for all § : B — Z
we have that 6 o ¢ = 0 = 6 = 0. If we are not in an additive category, then ¢ is a monomorphism if
for all 01,05 : Z — A we have that ¢ 0 0y = ¢ 0 03 = 01 = 5. Similarly, ¢ is an epimorphism if for all
01,05 : B — Z, we have that 1 0o =0y0¢ = 01 = 0. ¥

Lemma 1.2.6. Let ¢ : A — B a morphism in an additive category with kernels and cokernels. Then,
the morphism ¢ : ker ¢ — A is a monomorphism, and the morphism m : B — coker ¢ is an epimorphism.

Proof. Suppose that 6 : Z — ker ¢ such that 1 o8 = 0, then we have the following commutative diagram:

Z//Loe/OMB
N, e
~N

ker ¢

Where 6 o = 0 so ¢ o6 ot = 0. By the universal property of kernels, it follows that 6 is the unique
map that makes this commute. However, t 0 § = 0, so § = 0 also makes this map commute, hence by
uniqueness § = 0, and ¢ is a monomorphism.

Suppose that 6 : coker ¢ — Z such that 6 o 7 = 0, then we have the following commutative diagram:

A/¢/B_OQ\AZ
N %
~ 7

coker ¢

Again by the universal property, since 6 makes the map we commute we have that it must be unique.
However, since 6 o m = 0, clearly § = 0 makes this map commute as well so by uniqueness § = 0, and 7
is an epimorphism. O

Applying Lemma 1.2.6 to the the category sheaves, demonstrates that (ker F),¢) and (coker F, ) are
monomorphisms and epimorphisms for all natural transformations F'.

Proposition 1.2.6. Let F': F — & be a morphism of sheaves with values in abelian groups, then the
following are equivalent:

a) F is a monomorphism.
b) Forallz € X, F, : #, — 9, is injective.
¢) Fy : #F(U) - 9 (U) is injective for all U

Similarly the following are equivalent:

10In the category of abelian groups, a morphism is mono if and only if it is injective, and epi if and only if it is surjective.
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d) F is an epimorphism.
e) Forallx € X, F, : #, — 9, is surjective.
We need the following lemma:

Lemma 1.2.7. Let A be an abelian group, and x € X, then the assignment:

A ifxeU
0 otherwise

(2. A)(U) = {
is a sheaf such that (x.A), = A and is 0 for all other points. This is often referred to as the skyscraper
sheaf.

Proof. Define restriction maps by #Y = 1Id if x € V, and U, and 0 otherwise. This is clearly a presheaf,
and x ¢ U there are no sheaf axioms to check. Suppose x € U, and let U; be an open cover for U, such
that for s € A, we have that s|y, = 0. It follows that s = 0, because for at least one 7 we have that z € U;
and Hgi = Id. Now suppose that we have s; € U;, such that s;|u,nv;, = sj|UmUj. If © ¢ U, or Uy, then we
have that both restrictions are zero, if x € U; N U; then we must have that s; = s;, hence s = s; for any
U, containing z restricts to each s;. It follows that (z.A) is a sheaf.

If y # x, then any element [U, s] € (z.A), is equal to [V, 0] for some smaller V' not containing z, so
A, must be the zero group as every element is the zero element. We show that A satisfies the universal
property of the direct limit. Let ¢y : (2. A)(U) — G be maps which commute with restriction, and let
Yu : (.A)(U) — A be the identity, which also commutes with restriction as U contains x. We define
F:A— Gby:

F(a) = ¢u(a)

which is well defined because for all ¢y : (. A4)(U) — G, we must have that ¢y = ¢y as the restriction
maps are the identity. It follows that A satisfies the universal property of direct limit and is thus the
stalk of (x.A) at z. O

We now prove the proposition:

Proof. Note that ¢) = a), as if Fiy : F(U) — 4(U) is injective for all U, then Fy is a monomorphism
for all U. It follows that if 6 : 7 — % satisfies F' 06 = 0, then for all U we have that 8y = 0, so 0 is the
trivial morphism.

We now show that a) = b). Take the natural morphism ¢ : ker ' — %, and note that F o¢ = 0,
so ¢« = 0. However, we have that on each open set ty(s) = s = 0, so for all s € ker Fiy, we have that
s = 0. It follows that ker Fi; = 0 so ker F' is the trivial sheaf, and (ker F'),, is the trivial group, but by
Corollary 1.2.2 (ker F),, = ker F, so ker F, = 0 and F}, is injective.

We now show that b) = ¢). Suppose that for all z, F, : %, — ¥, is injective, then we have an induced
injection:

HQ’IHH%

zeU zeU

Suppose that s,t € Z#(U), such that Fy(s) = Fy(t), then we we have that by the definition of the stalk
map Fy(s;) = Fy(t;) for all € U. However, the map above is injective so (s;) = (t,) implying that

a) = b) = c) = a)

implying the first part of the claim.

We now show that d) = e). Let € be the skyscraper sheaf x,(¥,/im F,), and note that the map
Yy Y U) — HU):

0 otherwise

Yu(g) = {[gz] et



1.2. SOME CATEGORY THEORY: SHEAVES, STALKS, GERMS, AND ALL THAT 26

trivially commutes with restriction maps, and thus defines a natural transformation. Vacuously we have
that ¥ o FF =0, as if z € U, we have that:

Yu(F(s)) = [F(s)e] = [Fa(s2)] = 0

and if x ¢ U, we have that ) = 0 anyways. However, since F' is an epimorphism, this implies that 1) = 0
so 1, = 0. Note however, that 1, is the map defined by:

Vo Y — Y/ im F,
Go [gx]

which is clearly a surjection, hence ¥, /im F,, = 0, implying that im F,, = ¢, and thus the claim.

To show that e) = d), suppose that F, : %, — ¥, is a surjection for all z € X. Let ¢ be any other
an morphism ¢ — J# such that ¢ o F' = 0. This implies that on stalks:

¢IOFT:O

But F, is a surjection, and thus an epimorphism, so on the level of stalks we have that ¢, = 0 for all
z € U. Now examine the commutative diagram:

4(U) ou H(U)
[Locv % 00— [loer 7
If g € 9(U) we have that:
(pu(g)z) =0

however, the downward maps are injections, hence we must have that ¢y (g) = 0 for all g € 4(U), and
all U, thus ¢ = 0, so F' is an epimorphism.

O

Definition 1.2.9. A category is abelian, if it is additive, kernels and cokernels exist, and every monomor-
phism and epimorphism are the kernel and cokernel of some morphism. '’

Theorem 1.2.1. Let X be a topological space, then the category of sheaves with values in abelian groups
is an abelian category.

Proof. We need only show that every monomorphism is the kernel of some morphism, and that every
epimorphism is the cokernel of some morphism.

Suppose that F' : &% — ¢ is a monomorphism, we want to show that (&, F) is the kernel of some
morphism ¢ : ¢4 — . Well, take S to be coker ', and v to be the projection m. We note that
mo F =0, indeed m = shon?, so for all open sets U, we have that:

WUOFU:ShUOTrI[}OFU:ShUOOU:O

so w o F' is the trivial morphism. Now let ¢ : 7 — ¢, such that 7o ¢ = 0, then we want to obtain the
following commutative diagram:

// 0
H @ g\w coker F'

110Often times people refer to the morphisms ¢ and 7 as the kernel and cokernel, so when we see every monomorphism
(epimorphism) is a kernel (cokernel) of some morphism we are saying every monomorphism (epimorphism) can be written
as the inclusion (projection) map ¢ (7) induced by the kernel (cokernel) of some morphism.
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We move to level of stalks, and since (coker F'),, = ¢, /im F, we have the following diagram:

where 7, is 7, composed with the isomorphism (coker F'), — ¥, /im F,, and by the uniqueness of the
quotient map it follows that 7, is the quotient map. We see that for all h, € J7;:

Ty O ¢x(hx) =0

$0 ¢y (hy) € ker T, = im F,, and we have that im ¢, (h,) C im F,. Now consider the following commuta-
tive diagram:

(U) bu 4(U)
Fy —
/
F(U)
HmGU ‘gz@
~_
(F)
~
[Licv 7 (¢) [cv %

Take an h € s#(U), then we have that:
d)U(h)x = d)x(hx) €imFy,
Since (F) is an injection, we see that there exists a unique (s;) € [], .y Z2, such that:

(Fu(s2)) = (¢u(h)z)

For each x € U, we thus have that there exists an open neighborhood V,, C U, and a section s* € % (V)
such that:

[Va, Fv, (s%)] = [U, v (h)]
implying that there is a W, C V, "U =V, such that:
Fy, (s")lw, = ¢v(h)|w,
The set of all such W,’s and s”|w,’s covers U, and we see that for V, NV, # 0:
Fw,ow, (s"|lw,.nw,) = v (h)lw,.nw, = Fw.nw, (sY|w,nw,)
however Fy,nw, is injective by Proposition 1.2.6, so we have that:
s lwoow, = (8" |lw,)lwenw, = (s lw,)w.ow, = s¥|lw,ow,
The s*’s then glue together to form an s € .%(U) such that:
Fy(s)s = du(h)e

for all z € U. Since Fyy(s) and ¢y (h) both lie in 4 (U), and they agree on all stalks we must have that
oy (h) = Fy(s). It follows that for all U im ¢y C im #;. We now define a morphism ¢ : U — ¢y by:

Yu(h) =s
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where s € #(U) is the unique section such that that ¢y (h) = Fy(s). To see that this commutes with
restriction maps, we need to show that 6Y o ¢y = by o 05. In particular, we need:

Yy (67 (h)) = 67 (s)
Take h|y, then ¥y (hly) = f € Z(V), where Fy (f) = ¢v(h|v). Now note that:
Fy(slv) = (Fu(s))lv = (du(h))lv = dv(hlv)

so Fy(sly) = F(f), and thus f = s|y implying the claim. To see that this is actually a group homomor-
phism, let h, g € #(U) such that ¢y (h) = s and 9y (g) = t. We need to show that:

Yulh+g)=s+t

Well, let ¥y (h + g) = f be the unique f € F(U) such ¢y(h + g) = Fy(f). However, we see that
pu(h+g) = du(h) + du(g) = Fu(s) + Fu(t), hence:

Fy(f)=Fu(s)+ Fyu(t) = f=s+t

It follows that ¥y (h + g) = s+ ¢, and is thus a group homomorphism. In particular, this implies (%, F)
satisfies the universal property of the kernel of the cokernel of F' and is thus the kernel of some morphism.

Now let F : # — ¢ be an epimorphism. We claim that (¢, F) is the cokernel of ¢ : ker FF — %#. We
first note that clearly:

Foir=0

as im 1y = ker Fyy for all U. Let ¢ : .% — S be an morphism such that ¢ ot = 0, we want to that there
exists a unique 1 such that:

ker F' ¢ F ¢ H

Since % is an epimorphism, we have that F}, is surjective by Proposition 1.2.6. We see that since ¢, is
the inclusion map of the kernel of F,, that im:, = ker F,,. We also have that im:, C ker ¢,, hence we
define a unique map 1, by:

Ve (ge) = Pz(52)

where s, is any element in F, 1(g,). This is well defined, as if s/, is any other element in F, (g,), we
have that:

bz (52) = P (5),) = P52 — 87

but s, s, € F;1(gz), s0 sz — s, € ker F;, = im,. It follows that s, — s/, € ker ¢, 50 ¢p.(55) = ¢ (s,) as
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desired. We now examine the following diagram:

//— duU
Z(U) - 9(U) Stvo 2(U)

(¢)

where we want to define ¥y such that this commutes. Take an element g € 4 (U), then we have a unique
corresponding element (g,) € [[,cy % This then maps to (¥.(92)) € [l ey 7, which is equal to
(¢2(s2)) for some (s,) € (Fi)"1(gz). We want to find a section h € 5 (U) such that h, = 1, (g.), as we
can then define ¥y by ¢y (g) = h. For each x we have that:

b2 (82) = Va2 (92) € 74

so in particular, there exists an open neighborhood V,, of z, and a section s* € % (s*) such that:

[me (sz (Sx)] = 1/):0 (gz)

Cover U with all such V,,, then we want to show that:

\Z S Vzm‘/y = Vy S VwﬁVy
ACH] v, (s¥)|

However, note that for all p € V,, NV, we have that:

(¢VT(SI)|VzﬂVy)p = o, (s")p = Vplgp) = dv, (8¥)p = (¢Vy (Sy)|VmVy)p

so we must have that sections agree on overlaps. It follows that that ¢y, (s7)’s glue together to form a
section h € J(U) such that h, = ¥, (g.) for all z € U. We thus define 1y to be:

Yulg) =h

It is then clear that h is independent of our choice of (s,) as v, is independent of that choice, and
moreover that it is independent of our choice of cover of U, as any other choice will have to agree on
stalks. This is also clearly a group homomorphism, and is compatible with restriction maps; indeed if
9,9 € 9(U), and we have that ¥y (g) = h and Yy (g') = I, then we see that for all z € U:

(Wu(9) +Pu(9)e = ha + hy = Y2(g2) + Vu(9y) = Y2 ((9+ 9')2) = Vv (g + 9')a

Since they agree on stalks we must have that they are equal. Moreover, we want to show that:

Yu(g)lv = hly

However, if we again take stalks, we see that for all x € V,

(wU(g)‘V)r = wU(g)x = ql}z(gm) = hz = (h‘V)z

so the two must again agree. Finally, we check that ¢yoF' = ¢. Let s € % (U), then we have Fy;(s) € 4(U),
which maps down to sequence (Fy/(s).) = (Fi(s.)), where each s, clearly lies in F, *(F,(s,)). We thus
have that:

wl(Fi(sr)) - ¢m(sx) = ¢U(s)m
for all x by definition of .. It follows that from the defining property of ¢y :
wU(FU(S))z = ¢w(Fz(8x)) = QSU(S)w

for all =, hence Yy (Fy(s)) = ¢u(s). We thus have that (¢, F) satisfies the universal property of the
cokernel of the kernel of F', and is thus a cokernel as desired. O
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We now briefly discuss the image sheaf, so that we can talk of exact sequences of abelian categories.
Definition 1.2.10. let F' : . % — & be a sheaf morphism. The image sheaf, denoted im F' is the
sheafification of the presheaf im? F' defined by:

(im? F)(U) =im Fy Cc 9(U)

In general, we note that im? F' is not a sheaf, hence why we take the sheafification. We also have the
following definition:

Definition 1.2.11. Let % be a sheaf over X, then a subsheaf ¢ of % is a sheaf on X such that
4(U) c Z(U) for all U, and the restriction maps on ¢ are given by the restriction of 6 : #(U) — F (V)
to 9(U) for all V C U.

Proposition 1.2.7. Let F': % — 4 be a morphism of sheaves. There exists a natural map ¢ : im F — &4,
such that kert =0, and (im F') = imP ¢ is a subsheaf of 4.

Proof. First note that we have a clear inclusion morphism (? : im? F' — ¢, which is injective on all U. By
the universal property of sheafification, we thus have a unique map ¢ : im F — ¢ such that the following
diagram commutes:

imP F — G

Sf / L/
im F
It thus suffices to check that ker ¢y = 0 for all U. Let (s,) € (im F')(U), and suppose that:
((s2)) =0

Since (s;) € (im F)(U), we have that for each z there exists V;, and an s* € F(V;) such that s = s,
for all ¢ € V,,. Moreover, we have that by our work in Proposition 1.2.3, that:

U(se))lv, = (") =0

However, this implies that s* = 0 for each , hence sy =0 = s, for all p € V,;, and all z € V,,. It follows
that (s;) = 0, so the ker: = 0.

We have that «(im F') is a sub presheaf, by defining:

(im F)(U) = w(im Fy) C 9(U)

We define restriction maps, 6% : «(im F)(U) — «(im F)(V), by restricting 0¥ : 4(U) — 4(V) to the
subgroup ¢(im Fy). It follows if g € ty(im Fyy), then g = ty((s2)), so glv = tv((sz)|v), thus 6Y has
image in ¢(im F)(V'). The restriction maps are then compatible with one another, as they are compatible

on ¥.

To show this is a sheaf, let {U;} be an open cover U, and g € «(im F)(U), such that g|y, = 0 for all
U;. Well, since g € «(im F)(U) C 9(U), and ¥ is a sheaf, we must have that g = 0. Now suppose that we
have g; € «(im F')(U;) such that g;|v,nv, = gj|u,nu, for all i, j. Then we must have have that there exists
a g € 9(U) such that g|y, = g;. We need to show that g € «(im F)(U). For each i write g; = v, ((52)s),
then we have that:

LU,ﬂUj((Sx)i‘U,;ﬂUj) = LUlﬁU]((Sx)”UJ‘nUJ)
which implies that:
(Sl)i‘UiﬁUj - (SI)]|U1PIUJ

as vy is injective for all U. It follows that the (s;); glue together to form a global section (s;) € (im F)(U),
such that (s;)|u, = (Sz)u,- We see that for all U;:

(9 —w((s2)|v, = 9i — v, ((52):) =0

hence g — ty((s5)) = 0, implying that g € y(im Fyy). It follows that «(im F') is a subsheaf of ¢ as
desired. O
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Definition 1.2.12. Let F' : % — ¥ be a morphism of sheaves of abelian groups or rings, then F' is
injective if ker F' is the trivial sheaf, and F is surjective if ;(im F') = 9.

Proposition 1.2.8. Let F' : % — 4 be a sheaf morphism of abelian groups, then F is surjective if and
only if coker F' is the trivial sheaf. Moreover, if F is surjective if and only if F, : F, — 9, is surjective
for all x.*?

Proof. Suppose that coker F' is the trivial sheaf, then we have that im F},, = ¥, for all x € X. Since ¢ is a
monomorphism, we have that ¢, : (im F'), — %, is an injection. Moreover, since (im? F'), = im F,, = ¥,,
we have that 2 : (im? F'), — ¥, is an isomorphism. Since sh, is an isomorphism, and:

Ly oshy = (P
we must have that ¢, is a surjection as well, and thus an isomorphism. Since ¢, is an isomorphism for

all, we must have that ((im F) = ¢ as desired.

Now suppose that F' is surjective, that ¢«(im F') = ¢. Then the stalk maps are isomorphisms, so we
once again have that (im F'), = %, implying that ¢, ((im F),) = im F,, = %,. The stalks of coker I' are
then isomorphic to ¥,/ im F, = {0}, hence very section of coker F' must be trivial, implying the claim.

Now suppose that F' : % — ¢ is surjective, then ((imF) = ¢. In particular, we have that
tz(im(F),) = ¥, however by the commutative diagram in Proposition 1.2.7, this implies that:

ta(she ((im” F),)) = L ((im” F)y) =9,

Since (P is an honest to god inclusion map, (£ is an honest to god inclusion map, and it follows that
(imP F)y = 9,, hence im(Fy) = Y.

Now supposing that F is surjective for all z € X. Then the map:
FrimP F— 9

is an isomorphism on stalks. It follows that ¢ : im F' — ¢ is then an isomorphism on stalks, hence ¢ is an
isomorphism so im F' = ¢. O

Definition 1.2.13. A sequence of sheaf morphisms:

Fi_1 Fi_1 F; F; yz‘Jrl _ -

is called exact if ker F; = ¢(im F;_;) for all 4.
Proposition 1.2.9. Let:

0 Fi 1 Fi—1 F; F; ji—l—l — 0

be a sequence of sheaf morphisms. Then the sequence is exact if and only if the induced sequence of stalks:

- — (ﬁi,1)$ (Fi—1)e (yz):c (Fi)a (yijtl)m _—

is exact for all x € X.

Proof. Suppose that the sequence is exact, then we need to show that for all z € X, ker(F;), = im(F;_1),.
Let s, = [U, 5] € ker(F;),, then we have that:

U, (Fi)u(s)] = [U,0]
It follows that there exists an open neighborhood V,, of x such that:
(Fy)v(sly)=0

however, if (F;)v(s|y) = 0, we have that by exactness s|ly € ¢(im F;_1)(V), so there exists an (s;) €
(im F;_1)(V) such that ¢((s;)) = s|y. It follows that s|y is then section such that for each open
neighborhood of z, W, s|lw, = (P(s%), implying that s, = (s|v). = tB(s%) € im(F;_1)., hence

x

12Qur proof of this second fact will hold for sheafs with values in Set, and Ring.
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Sz € (im F;_1),. Now suppose that s, € im(F;_1)., then we have that there exists an f, € (.%#;_1), such
that (Fy_1)z(fs) = Sz. Hence for some U and V, and some f € .%;_1(U), s € %;(V) we have that:

U, (Fi—)u(f)] = [V, 4]

so there exists a open subset € W C U NV, such that:

(Fi-)w (flw) = slw
It follows that s|w € (im? F;_1)(W), and by the universal property we have that:
ww o shw (slw) =y (slw) = slw
Taking stalks, we find that:
Ltz o shy(sz) = s
80 8y € t(im(F;_1)),. We thus see that:
(Fi—1)a(s2) = [W, Fw o tw o shw (s|w)] = [W,0] =0

S0 Sy € ker(F;_1),. It follows that that ker(F;_1), = (im F;_1),, so the sequence of stalks is exact.

Now suppose the sequence of stalks is exact, we want to show that (ker F;)(U) = ¢(im .%;_1)(U). Note
that in the last section, we have implicitly shown that ¢(im F;_1), = im(F;_1),. Let s € (ker F;)(U) =
ker(F;)y, then we have that for each x € U, s, € ker(F;),, hence each s, € im(F;_1), = ¢(im F;_1),. It
follows that there is an open cover of U, by U, such that s|y, € «(im F;_1)(U), which all vacuously agree
on overlaps. We thus have that s|y, glue together to s € v(im F;_1)(U), implying that (ker F;)(U) C
t(im F;_1(U)). Now let s € ¢(im F;_1)(U), then for all © € U, we have that s, € ((im F;_1), = im F,, so
by exactness each s, € ker(F;), = ker(F;),. It follows by the same argument that s € (ker F;)(U), hence
(ker F})(U) = «(im F;_1) implying the claim. O

We also have the following result:

Proposition 1.2.10. Let F': F — & be a morphism of sheaves of abelian groups, then F is an isomor-
phism if and only if it is injective an surjective.

Proof. Suppose that F' is an isomorphism, then in particular, Fy; is an isomorphism for all U. It follows
that ker Fiy = (ker F')(U) = {0} so ker F is the trivial sheaf, implying that F' is injective. To show that
F' is surjective, by Proposition 1.2.8 we need only show that coker F' is the trivial sheaf. Since F' is an
isomorphism, we have that F, : %, — ¥, is an isomorphism, so im.%, = ¥, for all x € X. Since the
stalks of coker F' are isomorphic to ¢, /im .%, = 0 it follows that (coker F')(U) is trivial for all U, thus F
is surjective.

Now suppose that F' is injective and surjective. Since F' is a sheaf, Proposition 1.2.2 we need only check
that F is an isomorphism for all z. Since F is injective, we have that (ker F'), = 0, so by Corollary 1.2.1
we have that ker F,, = 0. Since F is surjective, we have that ((im F'), = ¥, but +(im F'), = im F,,, hence
F, is a a surjection, implying that F}, is an isomorphism for all x, hence F' is an isomorphism. O

We now discuss the process of ‘gluing together’ sheaves. First some notation, if % is a sheaf on X,
then we can obtain an induced sheaf on any open set U C X, denote 7|y, by setting Fy (V) = F(V)
for all open subsets of U. Since any open subset of U is open in X, this assignment makes sense, and
clearly determines a sheaf.

Theorem 1.2.2. Let {U;}ier be an open cover for a topological space X, and F; be a sheaf on each U;
such that there exist isomorphisms ¢i; @ Filu,nu, — Fjlu.nu, which satisfy the cocycle condition for
all ,3, i.e.

ik © Pij =Pix and ¢y = Id

on U; NU; NUy. Then there exists a sheaf F on X such that F |y, = F; for all i.
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Proof. Let V C X be an open set, we define # (V) to be the set:

F(V) = {(81) € HL%(V NU;) Vi, j € 1,94 (silvavinu;) = Sj|vamUj}
icl

where it is understood that ¢;; is the group isomorphism (qbij)VnUmUj. We check that this is indeed a
subgroup of [[, #(V NU;). Clearly, 0 € .%(V), so we need only check that .7 (V) is closed under addition
and contains inverses. Let (s;),(t;) € #(V), then we have the sequence (s; +1t;) € [[, #(V NnU;). We
want to show that this sequence lies in #(V'); note that ¢;; and restriction maps are homomorphisms,
so we have that for each i and j:

bij([si + ti]lvru.nu;) =045 (silvavinu,) + ¢i(tilvav.nu;)
=sjlvavinu; + tilvavino,
=[s; + t;llvavinu,
hence (s; +t;) € # (V). The same argument demonstrates that (—s;) € [[, #(V NU;) is contained in
the Z(V), hence .7 (V) is a subgroup. Now let W C V, we define restriction maps 6}, by:

O ((s0)) = (O, (50))

where where G‘YV%% is the restriction map %;(VNU;) — %;(WNU;). Tt is then clear that .% is a presheaf,
as the restriction maps clearly satisfy 6}, = Id, and 6% o 0}, = 0%. We first verify that Z|y, = Z;. We
define a morphism Fj : % |; — Z |y, on open sets V' C U; by:

s — (¢ji(slvau:))

We first check Fj(s) € F|u,(V) = .7 (V). We see for all k and [ that by the cocycle condition:

Sri(Djk (slvou ) lvavenu,) =0k (k(slvav.no,))
:¢jl(5|VnUmUl)

which is the Ith component of our element, hence F' has image in .7 |y,. This map clearly commutes with
restriction as ¢;; commutes restriction, hence F is a natural transformation, and thus indeed a morphism.
We define an inverse morphism Fj_1 given on open sets by (s;) — s;, which is again clearly a natural
transformation. We check that this is an inverse, let s € %#;(V) = %;(V N Uj), then we have that:

F o Fi(s) = ¢j5(slvau,) = slvau, = s
While:
Fjo Fi ((s:) = (¢5i(sjlvau,))
However, we have that each s; € Z(VNU,) :
si = silvau, = silvav.nu; = ¢5i(sjlvavi.nu;) = ¢4i(sjlvau;)

hence Fj o Fj_1 = Id, and Fj_1 o F; = 1d. Tt follows that .7; = Z|y,. We can now show that .# is a

sheaf, take the sequence (s;) € [[, %(V NU;) that satisfies s;|v,nu, = s¥ for each i and k. Moreover we
see that if s € .Z|y,nv, (V):

F;

(Djk (b3 (s)|lvauy))
(Djk © D (8)|vauy)
=(¢ir(s)lvru,)
=Fi(s)

U;NU; © ¢z‘j(8) =

We now check that % is a sheaf; let Vj, be an open cover of V', and (s;) € .% (V) such that (s;)|v, =0
for all k. We see that (s;)|v, = 0, implies that for each ¢ we have that:

si|VkﬁUi = 0
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for all k. Since {Vi N U,}x is an open cover for V N U,, it follows that that s; = 0 as %, is a sheaf. This
holds for all i so (s;) = 0. Now suppose that we have sections (s¥) € .#(V4) such that:

i
(55 Vi = (87w
implying that for all i:

k m
8i Venvinu; = 87 [Vinvi,nu;

It follows that since {Vi N U;} is an open cover of V NU;, and .%; is a sheaf, that there exists a section
s; € Zi(V NU;) such that s;|v,np, = s¥. We thus have a sequence (s;) € [[; Zi(V N U;), such that
(5:)]v, = (s¥). We want to show that:

qsij(si‘VﬁUiﬁUj) = 8j|VmUmUj
However, note that s; € .%;(V NU;), hence we have that:
silvavinu; = g\zgg:mUj(si)
If we further restrict to Vi N U; N Uy, then we have that:

VnuU; VeNU; VnuU; Vi.NU; k k
(silvavinu,) vinuino, = 0y, Athao, (81) = 0700 aw, © Ovint, (si) = 0vF 00! aw, (55) = st lwnvino,

And we know that for all k:
bii (sFlvinviny,;) = 5§|VkﬁUmU_,»
Since ¢;; is a natural transformation, we thus have that:
bij (silvov.nu;) vinvinu; = (85lvau.nu;) vinuino;
Since Vi, NU; NU; covers V NU; NU;, we have by sheaf axiom one that:
bij(silvav.nu;) = sjlvav.ny;
hence (s;) € .#(V) as desired. O

Proposition 1.2.11. Let U; be an open cover for the topological space X, F; be a sheaf on each U;, and
bij + Filv.nu, = Filuinu, isomorphism which satisfy the cocycle condition, then the sheaf F induced by
gluing the of %;’s satisfies the following universal property: for all sheafs 4, and collection of morphisms
Y+ Fi — Glu, such that Pilu,nu; © ¢ij = Yilu,nu,, there exists a unique ¢ : F — 4 such that the
following diagram commutes for all i:

F

v, — bl — G

| e
F;l wz
L7
Fi

U;

Proof. Let (s;) € #(V), then we see that (¢;(s;)) € [[, 9(V NU;), where we again suppress the notation
(¥i)vnu,. However, note that {V N U;} cover V, hence since:

Yi(si)lvov.nu; =vi(silvav,nu;)
=Yilvinu; (95i(s5lvou,nu;))

=v;(sjlvau.nu;)

UiﬁUj (sj ‘VﬁUiﬁUJ')

we have that the sections 1;(s;) € 4(V NU;) glue to a unique section g € 4(V'), which satisfies g|vny, =
1;(s;) for all i. We thus define 6 on open sets by:

Yv((si)) =9



1.2. SOME CATEGORY THEORY: SHEAVES, STALKS, GERMS, AND ALL THAT 35

We check that this commutes with restrictions. Let W C V, then we want to show that:

Yw ((s:)lw) = glw

We see that (s;)|w is equal to (s;|wnu,), so Yw ((si)|w) is the section unique such that:

Yw ((8:)[w)lwau, = Yi(silwnu,)lwau, = ¥i(s:)lwnu,

However, we have that:

(glw)lwnu, = glwav, = (glv)lwav, = (¥i(si)lwnu,

so sheaf axiom one implies that the assignment V' +— vy is indeed a natural transformation and thus a
morphism as desired. We now show that the diagram commutes; let V' C Uy, and (s;) € F|y, (V) =
Z(U). Then we have that:

i o Fi(si) = 5(s5)
while:

(Ylu;)v(s) =vv((si) =g

where for all 4, we have that glvny, = ¥i(s;). We see that VN U; =V, so g = glvau, = ¥;(s;), so F
satisfies universal property as desired. O

We now show that .# is unique up to unique isomorphism, and that we can always glue a sheaf back
together.

Corollary 1.2.3. Let U; be an open cover for X, and %#; sheafs on U; equipped with isomorphisms
¢ij + Fi — F; which satisfy the cocycle condition. Then the sheaf & induced by the gluing of F; is
unique up to unique isomorphism. In particular, if % is a sheaf on X, and U; is any open cover of X,
then F is the sheaf induced by gluing of F|u, together.

Proof. Let Z be the sheaf induced by the gluing of .%;, and ¢ be any other sheaf which satisfies the
universal property outlined in Proposition 1.2.11, i.e. ¢ is a sheaf with isomorphisms G; : %#; — ¥|u,,
such that Gj|u,nu; © ¢ij = Gilu,nu,, and that for any collection of morphisms ; : %#; — |y, there
exists a unique ¢ : 4 — S that makes the diagram commute for all 7. In particular, we have that we
get unique maps Yy : Y — F, and Yz : F — ¢4, such that:

GioF7 ' =4zy, and FoG ' =4y

U;

On any open set V, we have that V NU; is an open cover. Let s € #(V), then s|yny, € F(V NU;), and
we have that:

(Vg o Vz)v(s)lvau, =Yg oYz )vau,(slvau,)
=y |v; o Yzlv,)vou, (slvau,)
=(FoG oGy o F Yyny,(slvau,)
:5|V0Ui
so by sheaf axiom one we have that (¢g o ¥ 4)y = Id. The same argument shows that ¥z o 1y = Id,
then F =2 ¥, so .% is unique up to unique isomorphism.

Now let .% be a sheaf, and U; an open cover of X. We see that by setting .#; = .% |y, we have natural
isomorphisms .%;|u,nu; — Z|v,nu, given by the identity map s — s on all open sets. This makes sense
as unraveling the notation we have that for any open set V C U; N U;:

Filviow; (V) = Fi(V) = Flu,(V) = F(V) = Flu,

J

(V) =Z;(V) = Zlvinu; (V)

It suffices to show that % satisfies the universal property in Proposition 1.2.11, where the maps FZ-_1 :
Flu, — &,; are the identity maps. Let ¢; : #_,¥|y, be any collection of morphisms such that 1;

Uif‘IUj ==
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Yjlu,nu;, and take s € Z (V). We have define ¢(s) to be the unique section g € ¢ (V) such that
glvau, = ¥i(slvap,). This section exists as V N U; cover V, and for all ¢ and j we have that:

Yi(slvou, ) lvav.nu, =Vilv.nu; (lvav.nu;)
=Yjlv.nu; (slvau,nu;)
:¢j(S‘VﬁUiﬁUj)
=v;(slvau;) lvau.nu,
hence by sheaf axiom two, the sections glue together to form g. The same argument in Proposition 1.2.11

demonstrates that this a natural transformation, and that ¥|y, = v;, so F satisfies the universal property
as desired. O

In the process of proving Corollary 1.2, we have obtained the following corollary as well:

Corollary 1.2.4. If ¢; : F|y, — 9|vu, is a collection of morphisms such that 1; v.nu; = Yiluinu, for
all i and j then there exists a unique map ¢ : F — 4 such that Y|y, = ;. In particular, ¥ is an
isomorphism if and only if 1; is an isomorphism for all i. Moreover, if ¥ : F — 4 is a morphism such
that Y|u, : Flu, — Y|u, is an isomorphism then 1 is an isomorphism.

Proof. We need only prove the last statement, in particular we need only show that ¢, : #, — ¥, is
an isomorphism. However for all z € X, if x € U;, we have that ¢, = (Y|y,)s, as if [U,s] € %, then
U, s] = Ui, s|u,], so

V2 ([U; s]) = 2 ([Ui, slvi]) = [Us, ¢ (s]v,)] = (Ui, ¥lu (slv:)) = (¢]v,)=([U, s1)

implying the claim. O

1.3 Locally Ringed Spaces

We recall the definition of a local ring:

Definition 1.3.1. A commutative ring R is a local ring if there exists a unique maximal ideal. A local
domain is an integral domain that is local.

Example 1.3.1. Let A be a commutative ring and p a prime ideal, then A, = (A \ p)~'A4 is a local
ring. Indeed, consider the ideal m defined by:

ne{ore)

i.e. any element of m can be written as the equivalent class [(p,a)] where p € p. We check that this is
an ideal, clearly m is closed under addition, contains inverses, and contains the zero element. It is also
clear that m swallows multiplication so m is an ideal. We check this is maximal, suppose for the sake of
contradiction that we have an ideal J C A, such that m C J. Then there must be some a/s € J where
a ¢ p, but it if a ¢ p, then we have that a € A — p, hence:

so J = Ay, so m is indeed maximal. Now suppose that J is another maximal ideal not equal to m, then
J contains an element a/s such that a ¢ p, so the same argument shows that J = A,. It follows that A,
is a local ring.

We now define locally ringed spaces:

Definition 1.3.2. Let (X, 0x) be a topological space X, equipped with a sheaf of rings &,. Then
(X, Ox) is a locally ringed space if the stalk of Ox at z, denoted (Ox ), or Ox 4, is a local ring for all
z € X. We denote the unique maximal ideal of the stalk a locally ringed space as m,, and the sheaf Ox
is called the structure sheaf of X.

Example 1.3.2. Let (M, C) the data of a smooth manifold M with the sheaf of C'*° functions on M.
The stalk (C°), is the set of equivalence classes [U, f], where 2 € U. Consider the set:

m, = {[U, f]: f(z) = 0}
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Note that if [U, f] € m, then clearly ever [V, g] = [U, f] also satisfies g(z) = 0, as f and g have to agree
on an open set containing x. It follows that m, is well defined. We see that m, is clearly a subgroup of
(C2), so we check that m, is an ideal. If [U, g] € (C*), and [V, f] € m,, then we have that [UNV, f - g]
satisfies (f - g)(z) = f(x)g(z) = 0, so m, is an ideal.

We show that m,, is maximal; define a map ¢ : (C*), — R by:

(U, f]) = f(x)

This well defined for the same reason that m, is well defined, and satisfies keriy = m, essentially by
definition. It is also clearly a ring morphism, and surjective as the constant function maps f(z) = a maps
to [M, f] under the map C>*(M) — (C°),, which maps to a under . It follows that ¢ descends to an
isomorphism (C*°), /m, — R. Since the quotient space is a field, it follows that m, is maximal.

To see that m,, is unique, suppose that J is any other maximal ideal not equal to m,. Then there must
be some [U, f] € J such that f(x) # 0. However, this implies that there exists an open neighborhood V,
of x such that f(y) # 0 for all y € V,.. The function g(z) = f(x)~! is then smooth on V,, and we see
that:

[U, f] : [Vmag] = [Vzal]

which is the unit element of (C*>),, hence J = (C*°),, and m, is unique.

Since every stalk in a locally ringed space has a unique maximal ideal, we can associate to each stalk
a unique field as follows:

Definition 1.3.3. Let (X, Ox) be a locally ringed space, then for all z € X the residue field k. is
given by:

For each open U C X, and all € U we have the evaluation map ev, : Ox(U) — k, given by:
s — [84]

where [s,] is the image of s, under the projection (Ox), — k.. We say that an element of s vanishes at
sz if s € kerev,,.

Definition 1.3.4. Let (X,.%#) be the data of a topological space, and a sheaf on X, and let f: X — Y
be a continuous map. Then f,.% is the sheaf on Y defined by:

(fF)(U) = F(f71(U))

We call f,.# the pushforward or direct image sheaf.

Proposition 1.3.1. Let (X,.%) be the data of a topological space, and a sheaf on X, and let f: X =Y
be a continuous map. Then f..F is indeed a sheaf on'Y .

Proof. We first show that f..% is presheaf. Define restriction functions 6% : (f..7)(U) — (f..Z)(V) by:

U _ gf7HU)
O =0rw)
Note that this makes sense, as if V' C U, then we have that f='(V) c f~}(U). It follows that for
WcVcuU:

-1 -1 -1
9}//‘/ o 95 = 9 (V) [¢] 0"]’:7155§ = 0; (U)

f _ 9U
f=1(w) “tw) W

It is clear that 09 = Id, so f..Z is a presheaf. Now let s € (f..#)(U), and U; be a cover for U, such that
s|ly, = 0. Then this we have that s € Z(f~1(U)), and s| -1,y = 0 for all i. We that:

) = Uf—l(U»

so it follows that s = 0, as .% is a sheaf. The same argument demonstrates that f..# satisfies sheaf axiom
two, so fy«.% is a sheaf. O



1.3. LOCALLY RINGED SPACES 38

Proposition 1.3.2. Let (X,.%) be a sheaf, and f : X — Y be a continuous map between topological
spaces. Then for all p € X, there exists a natural morphism of stalks (f+)p : (f« 7)) = Fp-

Proof. Let p € X, for all U containing f(p) we define maps ¢y : (f+%)(U) — %, by first noting that
(f«7)U) = Z(f1(U)), hence p € f~1(U), and it thus makes sense to set:

s [f71<U)a S]P
“HU)

Since the restriction maps 6% are 9;,1(‘/), it follows that ¢y o 0Y = ¢y, hence by the universal property
of the colimit, there exists a unique map:

(f*)p : (f**?)f(p) — Fp

such that:

(f*)posz = ¢y (1'3'1)

for all U containing f(p), implying the claim.

Note that if 57,y € (f«F)¢(p), then by (1.3), we have that:

(fp(s5m) = [f_1<U)7 8]

for any s € (f.7)(U) = Z(f~*(U)), such that f(p) € U, and sy, = [U, s].

Let (M, C57) and (N, C¥) be smooth manifolds equipped with the structure sheaf of smooth functions
on M and N respectively. If F': M — N is a smooth map, then we obtain a map of sheaves F* : cy —
F.C%7 given on open sets by:

Ff - OF (U) — (B.CF)(U) = CR7 (F~H(U))
fr— foF (1.3.2)
When U = N, F# is the standard pull back map f* : C>°(N) — C>®(M). In fact, one can show that F is
smooth if and only if F' induces a morphism on the sheaves of smooth functions. Indeed, if F' is smooth

then (1.4) is clearly a morphism of sheaves. Now suppose that F is a set map such that F* : C3° — f.C%
is a morphism of sheaves. Let (U, ¢) be a coordinate chart for N, where:

It follows that for each i,

is a smooth map, hence:
poF:FHU)—R"
is smooth. Letting (1, V) be any chart contained in F~1(U), we see that the composition:
¢poFoy™ (V) = ¢(F(V))

is smooth a smooth map R™ — R", hence F' is smooth.

Our next goal is to extend this picture of smooth maps in differential geometry as the data of a
continuous map between manifolds, and a sheaf morphisms between the sheaves of C'*° functions to the
general setting of ringed and locally ringed spaces.

Definition 1.3.5. Let (X, Ox), and (Y, Oy ) be ringed spaces, a morphism of ringed spaces (X, Ox) —
(Y, Oy) is the data of a continuous map f : X — Y, and a sheaf morphism f* : 0y — f.0x. We generally
refer to a morphism of ringed spaces only by the map on the underlying topological spaces.
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Let (X, Ox), (Y, 0y), and (Z, 0z) be locally ringed spaces, and consider morphisms f : X — Y and
g Y — Z, then it makes sense to take the composition of topological maps go f : X — Z. However,
we see that ¢* : 07 — ¢.0y, and f! : Oy — f.Ox are morphisms of sheaves over different topological
spaces, so it doesn’t make sense to compose them. Indeed, (g o f)* should me a morphism of sheaves
over Z, Oz — (go f)«Ox. Well, note that (go f).0x = g«(f«Ox), and that we obtain an induced map
g+ f% 1 9.0y — g.(f.Ox) given on open sets V C Z by:

9o f* 1 (9:0v)(V) = Oy (g7 (V) — Ox(f (g7 (V)
5= Jgan(9)

which clearly defines a morphism. We thus define the composition g o f to be the data of the topological

composition, along with the morphism of sheaves on Z given by g, f o g*. Obviously, this makes locally
ringed spaces a category.

Lemma 1.3.1. Let (X, 0,) and (Y, Oy) be ringed spaces, and f a morphism between them. Then for
all x € X, there is an induced map on stalks fr : (Oy)fzy = (Ox)z- If g: Y — Z is another morphism
of ringed spaces, then the stalk map (g o f)z : (O2)g(f()) — (Ox)x 18 equal to fo 0 g¢(py. In particular,
if f,g: X =Y are two morphisms of ringed spaces, such that the topological maps agree, and such that
fo = gu for all x € X, then f* = g

Proof. There is an induced map fﬁ.(m (OY) (@) = (f+Ox)f(x), and by Proposition 1.3.2, an induced
map (fi)e : (f+Ox) @) — (Ox)e, hence we define f, by the composition:

fz = (f*)z o fﬁ(x)

which is indeed a map on stalks f, : (Oy) @) — (Ox)e-
We note that for sy, = [U, 5] € (Oy) () we have that:

fe(s5) = (fa (U, G (5)]) = [F71(U), £ (5)]
Let g : Y — Z be another morphism of ringed spaces, then we have that:
(go f)f = fugho f*
so:
(90 Fa = (90 a0 (9ef* 0 ") g(t))
Let sg(f(z)) = U, 8lg(f(x)), for some open U C Z and s € Oz(U), then we have that:
(U (9 ))v © g (5)])

*r([U f —1(U) OgU(S)]g(f JL)))
[f 1(9 1( )) -1( (S)]

(90 f)a(s52)) =(g0f

Unraveling our definitions, we see that:

[ffl(gfl(U)),fﬁfl(U) o gb(8)]a :(f*)x([gfl(U)afﬁfl(U) 0 g5 (8) fw))
=(f )wo(fﬁ)f(x)([ HU), g5 ()] 5 w))
=fo(l97"(U), g5 (8)] 5 (2))

=fzo0 ( )f ac)([U gU( )]g(f(ac)))
=fo 0 95@) (U, slg(s(a)))

hence:
frogr@ = (fog)e

as desired.

The proof of the final statement is left until the introduction the inverse image sheaf. O
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We can now adequately define morphisms of locally ringed spaces:

Definition 1.3.6. Let (X, 0x) and (Y, Oy) be locally ringed spaces, then a morphism of locally
ringed spaces is a morphisms of ringed spaces such that for all x € X, the induced map on stalks
fz : (Oy) (@) — (Ox). satisfies:

fw(mf(:r)) cmy

where my(,) and m, are the unique maximal ideals of (Oy ) ¢(,) and (Ox ), respectively. An isomorphism
of locally ringed spaces is a morphism where f is a homeomorphism and f* is an isomorphism.'”.

Lemma 1.3.2. Let F': % — & be a morphism of sheaves of rings, then I, : %, — 9, is an epimorphism
if and only if F' is an epimorphism..

Proof. Suppose that F' is an epimorphism, and let ¢1, ¢o : 4, — R be any two morphisms of rings such
that:

¢10Fw:¢2oFa:

Now note there exists maps ¢}, : 4(U) — R, given by ¢; o ¢y, where ¢y : 9(U) — ¥, is the usual ring
homomorphism, such that the following diagram commutes:

oy

., S
N

G (U)

g(V)

implying that ¢; : 4, — R are the unique maps which make the following diagram commute:

9(U) i 9 (V)
\w ) e
N
b G oL
bi
!
R

It thus suffices to check that ¢1 01y = ¢ 09y for all U containing x, as then ¢f; = ¢# so by uniqueness
¢1 = ¢2. Note that F' is a an epimorphism, and that we have that:

FxOI/}U :¢UOFU (133)

where 9y on the left hand side is the usual morphism .#(U) — .%,. Now consider the skyscraper sheaf
2. (R) along with the morphism:

¢ G — x,(R)
defined by:

- (S):{qﬁiow[](s) ifeelU

¢)'L
v 0 otherwise

13Note that in category of topological spaces f is a monomorphism (epimorphism) if and only if it is injective (surjective).
In the category of sheaves of rings monomorphisms and epimorphisms Proposition 1.2.6 still partially applies; the argument
for a) — ¢) is the same, as well as for e) = d), we will prove a modified version of d) = e) shortly. In particular the kernel
sheaf is a sheaf of ideals, while the image sheaf is a sheaf of rings, and the cokernel sheaf is the zero sheaf.
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This commutes with restrictions, and thus defines a morphism of sheaves. We see that for all U not
containing x we trivially have that ¢>%} oFy = (sz o Fy, while if U contains « then:

o © Fy(s) =¢1 0 by o Fy(s)
=¢10Fp0y(s)
=¢g0F; 0 wU(S)
=¢( o Fu(s)

hence ¢! o F = ¢2 o F implying that ¢* = 2. Thus on opens we must have that:
$10Yy = d209y

for all U containing x, implying the claim.

For the other direction, let F, be an epimorphism for all x, and suppose that ¢; : ¥ — I are
morphisms of sheaves of rings such that:

proF =¢o0F
Then we have that:

(¢1)onx = (¢2);c ol

however F, is an epimorphism so (¢1), = (¢2), for all z € X. Tt follows that ¢; = ¢ and so F is an
epimorphism. O

We also wish to extend Proposition 1.2.10 to the case of sheaves of rings:

Lemma 1.3.3. Let F' : % — 4 be a morphism of sheaves of rings, then F is an isomorphism if and
only if it is injective and surjective.

Proof. If F is injective and surjective then the same argument as in Proposition 1.2.10 holds.

Let F be an isomorphism, then in particular ker Fy; = 0 for all 0, so F' is injective. Moreover, we have
that im Fyy = 9 for all U, so it follows that (imP F') is actually a sheaf. It follows that sh : (im? F') — im F’
and (P : im? F' — ¢ are both isomorphisms, so we have that:

tosh=1? = oshosh™ =/Posh ™' =1 =/Posh™*
hence ¢ must be an isomorphism. It follows that «(im F') = ¢, implying the claim. O

Lemma 1.3.4. Let (X, Ox) be a locally ringed space, and U C X be an open set. Then, (U, Ox|v) is a
locally ringed space equipped with monomorphism ¢: U — X.

Proof. Tt is clear that (U, Ox|v) is a locally ringed space, and moreover that the inclusion map ¢ : U — X
is an injection and thus a monomorphism in the category of topological spaces. We thus need to describe
amap tf: Ox — 1.(Ox|y). Let V C X be open, and note that:

THV)Y=V U

as if ¥ € VN U, then we have x € U and x € V, hence «(x) =z € V,s0 x € .1 (V). If z € . =1(V), then
we have that z € U, and «(z) =2 € V, so 2 € V and U. We thus define ¢* on open sets as:

LQ/ :O0x (V) — (Ox|u)(V) = ﬁx|U(L71(V)) =0x(UNYV)
5'—>S‘Uﬁv

We note that this commutes with restriction maps, as if W C V then:

Uy (03 (5)) = O3y © 03 (5) = Ol (5)

while:

Oy o i (s) = 00 0 0V (5) = Oy (s)
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so this is a morphism of sheaves. We check that (! is a surjection for all 2. Let s, € (1.(Ox|v)),
then for some V C X, and some s € Ox(U NV), we have that s, = [V, s]. However, we have that
[UNV,s] € (Ox)s, so trivially:

L(UNVs)=[UNV,s]
We want to show that [V, s] = [UNV,s]. Let W =UNV, then we have that:
0w (s) = 05av (s) =

so i} is surjective for all z, and thus an epimorphism. It follows by Lemma 1.3.2 that f is an epimorphism
as well.

Now let (f, f*) and (g, g*) be morphisms Y — U, Ox|y — f.Oy, such that:
tof=1o0g
and that:
(cof)F = (vog)

Clearly since ¢ is a monomorphism, we have that the topological maps are the same, so we need only
show that f! = ¢*. By Lemma 1.3.1, we need only show that fy = gy for all y € Y . Note that since
(o f)F = (1o g)¥, we have that:

(Lo fly="Tyotry) =gyotew) = (Log)y

It follows that:

ﬁ —
(fy© (1) © tigsy = (95 © ) 100) © iy

however, ¢ is an epimorphism so we have that:

fy © (L*)f(y) =Gy © (L*)f(y)

It suffices to check that (t.)f(y) @ (tx(Ox|U))u(s(y)) = (Ox|U)f(y) is an epimorphism. We show a stronger
result, i.e. that (u.)f(y) is surjective. Let [V, s]ru) € (Ox|v)f(y); then f(y) € V, and s € Ox|y(V) =
Ox (V). It follows that V C U, so t.(Ox|u)(V) = Ox(UNV) = Ox(V), hence there is an element
[W S]L(f(y)) in (L*(ﬁX|U))L(f(y))~ We see that:

() £y (V2 sLurwy) = V) 8] gy = Vsl g

S0 (t4)f(y) 18 surjective, and thus an epimorphism. It follows that f, = g, for all y € Y, hence f* = gt
implyingt he claim. O
We then have the obvious corollary:

Corollary 1.3.1. Let f : X — Y be a morphism of ringed spaces, then if the topological map f is injective,
and for all x € X the map fo : (Oy)fz) — (Ox )z is an epimorphism then f is a monomorphism.

Clearly, ¢ is an isomorphism onto itself as we have that + : U — U C X is a homeomorphism, and
¥ Ox|u — (1.Ox|y) is the identity map. Importantly if f : X — Y is any morphism, then there exists
a restricted map f|y : U — Y, where the topological map is the standard restriction, and:

(flo): Oy — (flu)«(Ox|v)

is defined on open sets by:

(fl0)y = Oy (V) — (flo)(Ox|0))(V) = Ox|u(fI5" (V) = Ox(f (V)N V)

1y
S — g}tlgvgmU o f‘ﬁ,(s)
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V)

LV is the restriction map on Ox. We see that this commutes with restriction maps as:

where here Gf

(Flo)y (O3 (5)) =07 I(W)mUofévw%(s))

w \%
79f 1§w§mu 1Ew)> fv( s)
_af 1(W ﬂUOfV( )
_pfTtnU gt
9 f~1(w)nu ° 9 V)mU fv<>

Flgt o)
9f|_1(W)O( | ) (S)

=04 o (flu) (s)

as desired. We can also look at the image restricted analogue, f: X — V, where V is any open set
containing im f, and the structure sheaf is Oy|y. In this case f is the same as the original topological
map, and f* satisfies:

fly Ovlv(W) = Oy (W) — (f.0x(W)) = Ox(fH(W))
S —> f&,(s)

We thus have the following definition:

Definition 1.3.7. Let (X, 0x) and (Y, Oy) be locally ringed spaces and f a morphism between them.
Then f is an open embedding if there exists some open V' C Y such that f : X — V is an isomorphism
of locally ringed spaces.

Now note that Theorem 1.2.2; Proposition 1.2.11, Corollary 1.2, and Corollary 1.2.4 also carry over
immediately to the case of sheaves of rings. We want to be able to glue morphisms of ringed spaces
together.

Proposition 1.3.3. Let (X, Ox) be a locally ringed space, U; an open cover of X, and f; : U; = Y
morphisms which agree on overlaps, i.e. filu,nu, = f; - Then there exists a morphism f: X =Y,
such that fly, = fi for alli

Proof. First note that we can glue together continuous maps by defining f : X — Y as follows:

f(x) = fi(z)

whenever 2 € U;. This is well defined as if z € U; NU; then we have that fi|v,nv; = fj|lv.nv,. Moreover,
it is continuous as each f; is continuous, and the arbitrary union of open sets is open. It is easy to see
that f|y, = f; for all 4.

For each ¢ we have a morphism:

1l 0y — fi(Ox|u,)

Now note that for any V' C Y we have that:
(fix(Ox|u))(V) = Oxu, (f7 (V) = Ox(£71(V))
We thus define f* on open sets as:
Fi(s) =t
where t is the unique element in O (f~1(V)) such that:
10 = (Fv(s)

for all 7. First note that:

UUmf Uf

= Ufi_l
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so we need only show that forall i and j:
# _(rt
(f: )V(S)|f;1(v)mf;1(v) = (fj)v(3)|f;1(v)nf;1(v)

However note that by our hypothesis:

(V)52 msy ) =0ty © (FV(S)

D) -t ns1 o Bl i1 vns— )

Dtonns oy Bl wngien)

) Vnf; (V)( ‘f Wnf; (V))

(fi
(ff
(flu.u,) ronns o Bl ayagian)
(f5
(f

) ()\f VN V)

hence by sheaf axiom 2 we have that ¢ exists, so f‘ﬁ/ is well defined. It is clear that this defines a sheaf
;. We have that the restriction is a morphism:

Flo,: Oy — (flu)«(Oxu,)

though f|y, is equal to f; hence we have that the restriction is actually a morphism:

On an open set V C Y, we have that:
(fi)«(Oxlv)(V) = Ox(f7 (V) = Ox(fH(V)NU)

so we have that for s € Oy (V):

vv(s) =000y 0 £ (s)

gl
=01 (1)

—t|f;1<V)
:(fiﬁ)v(s)

It follows that since f; is a morphism of locally ringed spaces, and the stalk maps are inherently local,
that f : (Oy)f@) — (Ox), must be a morphism of local rings, i.e. fy(mf(,)) C mg, so f is a morphism
of locally ringed spaces as desired.

O

Recall our discussion regarding the composition of morphisms of locally ringed spaces; let .# and ¢
be sheaves on a topological space X, and let F' : % — ¢ be a morphism between. Let f: X — Y be
a continuous map, then further recall that f..# and f.¥ are sheaves on Y, and we have a morphism
between them defined on open sets by V' C U:

(fE)v  (f:F)V) — (fZ)(V)
S Ff—l(v)(s)

It follows easily that this then defines a covariant functor from the category of sheaves on X to the
category of sheaves on Y, which we denote Sh(X) and Sh(Y") respectively.

Definition 1.3.8. Let F' be a covariant functor from the category C to the category D. Then a is
covariant functor G : D — C, left adjoint to F if for all objects C' € C, and all objects D € D there
exists a natural isomorphism:

HOIIlC (G(D)a C) = HOInD(-Dv F(O))
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We want to find a way to take sheaf on Y and ‘pull it back’ to X given a topological map f: X — Y.
In light of Definition 1.3.8, the following is probably the most natural construction:

Definition 1.3.9. Let f: X — Y be a topological map, then the inverse image functor from Sh(Y)
to Sh(X), denoted f~!, is the left adjoint of the direct image functor f,

While Definition 1.3.9 is elegant enough, we must show that such a functor exists. In particu-
lar, we need to a) define a sheaf f~1(.%) for every sheaf .# on Y, b) define a morphism (f~'F) €
Homgy,(x)(f 1 (F), f~1(¥)) for every morphism F € Homgy,(x)(.#,%), and c¢) show that for every sheaf
% on X, and every sheaf .% on Y there exists a natural isomorphism:

Homgyx)(f ™1 (F),¥) = Homgp vy (F, f+(4))

We will prove these statements separately with the following series of results.

Proposition 1.3.4. Let f : X = Y be continuous map, and let F be a sheaf on'Y. Then there exists
an induced sheaf f~*(F) on X such that for all x € X, (f~*.F), is uniquely isomorphic to Ff(z)-

Proof. For every open set U C X, define fp’l(ﬁ)(U) to be:

;' 7)U) = lm F(V)
VO f(U)

That is, let I be the partially ordered set:
I={VisopeninY: f(U)CV}

where V; < V; if V; C V;. Then f(;lﬁ)(U) is the unique set/group/ring, equipped with morphisms
v F(V;) — (fp’lf)(U) satisfying ¢; o 0“2 = 1;, such that for another set/group/ring A, equipped
with morphisms ¢; : % (V;) — A which satisfy the same property, then there exists a unique morphism
¢: (f;"F)(U) — A such that the following diagram commutes:

=7

The same argument as in Proposition 1.2.1 demonstrates that (f,'.%)(U) must be given by:

F={(V,s):Vel,sec Z(V)}
modulo the equivalence relation (V;,s) ~ (V;,t) if and only there exists a (W;; € I) C V; NV; such that:
slw = tlw

We check that this defines a presheaf; suppose that U; C U; C X, and let [V,s]; € (f,'.#)(U;). This
implies that f(U;) C V, and hence f(U;) C V. We thus define HU by:

0 ([V, sli) = ¥4,(s)
where 1/1{, is the map Z# (V) — (f,1.%)(U;). It is clear that 95’ = Id, hence we check that:

p

Uj U; _ pU;
0 o OF: = 07
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Let [V,s] € (f, '.7)(U;), then we see that:

Uj i — j
R (D

We thus need only show that ng is well defined, as if so it is clearly a set/group/ring homomorphism.
Let [W,t]; = [V, s];, then there exists a subset Z C W NV such that f(U;) C Z and:

tlw = slw
We see that:
0 (W, 1]) = b (1) = ¥z (t]) = ww (s]2) = v (s) = O (V2 s)

so these are indeed restriction making, making the assignment U > f~ L(U) a presheaf.

Note that this not necessarily a sheaf; indeed if X = {x1,22}, Y = {y}, both equipped with the
discrete topology, and f : X — Y is the continuous map x; — ¥y, o — y, then clearly for every non
trivial sheaf .# on Y, f~L.% will fail the gluing axiom as:

f ' 7(X) = £ F({a}) = £, F ({a2}) = Z(Y)

In particular, f~1.% is the constant presheaf, which we have already shown is not a sheaf.

To complete the proof we simply take:
7 = (1)

i.e the sheafification of f, L.Z. The stalks of the sheafification are uniquely isomorphic to the stalks of the
presheaf, so we need only show that (f, L. #), is uniquely isomorphic to .# #(x)- We first describe a map

oy F(V)— (f;lﬂ)r, for all V' containing f(z). Let s € #(V), then we first map s to the equivalence

class [V, s] € (f,1.%)(U) for any U such that f(U) C V, and then map [V, s] to the equivalence class
[U,[V,s]] € (f;'F )z We check that this is well defined, i.e. independent of our choice of U. If U’ is any
other open subset such that f(U’) C V, then we need to show that:

U, [V.s]] = [U", [V, ]]
Consider the intersection W = U N U’, then:
[V, sllunu = Yv(s)

where ¢y is the map .7 (V) — (f, '].7)(U; N U;). We also have that:

V. sl'lvinu, = P (s)
hence the map is well defined. We see that if W C V, then for some U open such that f(U) C W:
ow (slw) = [U, W, slw]] = [U, [V, 5]]

hence the maps commute with restriction. It follows that there is a unique map ¢ : Fy,) — (f, L),
such that:

o([Vys]) = ¢v(s) = [U, [V, 5]

where U is any open set such that f(U) C V. Suppose that ¢([V,s]) = 0, then there exists a W C U
containing x such that:

V.sllw =0= 9y (s) =0
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where ¢y is the map .Z# (V) — (f,'.7)(W). However, this implies that [V,s] € (f,*.7)(W) is zero,
hence there exists an open subset Z, C V where f(W) C Z, and:

S|ZI =0
It follows that f(x) € V and f(z) € Z,, hence we have that:

so ¢ is injective. Now let [U,[V,s]] € (f~1.%),, we want to find a [Z,t] € .Z, such that ¢([Z,t]) =
[U, [V, s]]. Note that [U, [V, s]] € (f;'#)s, implies that = € U, and f(z) € f(U) C V. Choose the class
[V, 8] € Ff), then @([V, s]) = [W, [V, s]], for any W such that f(W) C V. Clearly W = U works, hence
o([V,s]) = [U, [V, s]] so ¢ is surjective and thus an isomorphism as desired. O

Note that if .# is a locally ringed space, then we clearly have that f~!.% is a locally ringed space
from the Proposition 1.3.4. We now proceed with the results:

Proposition 1.3.5. Let f : X — Y be a continuos map and .Z an object in Sh(Y'). Then the assignment
F — [7LF defines a covariant functor Sh(Y) — Sh(X).

Proof. Let F': % — ¢ be a morphism of sheaves on Y'; we first define a morphism fp_lF : fp_lgz — fp_lg.
Let U C X be an open set, then we define f_lF on U by:

(f ' Flu: (f ) U) — (f7'9)(U)
[Vys]— [V, Fy (s)]
We first check this is well defined, let [W,t] = [V 5]
[V, Fy (s)] = [W, Fy ()]
Note that by assumption there exists a Z C W NV such that:

, then we want to show that:

5|Z = tlZ
and f(U) C Z. Note that we have:
Fy(s)lz = Fz(slz) = Fz(tlz) = Fv(t)|z

so [V, Fy(s)] = [W, Fy(t)], and the map is well defined. We check that this commutes with restrictions;
let [V, s] € (f~1.%)(U;), and suppose that U; C U;, then:

(f, " F)o, (V. sli)lo, =[V, Fo(s))ilu,
=0 (Fv(s))
=V, Fv(s)l;
(f ' F)u, ([V,s];)
(F ), (84,(5)
(S~ P, (V. slly,)
where 17, is the map 4 (V) — (f,'9)(U;), and the subscripts describe which image set, f(U;), or f(U;)

we are taking the colimit over. It follows that f,- 'F is a morphism of presheaves. By the unlversal
property of sheafification we have the following dlagram

—1 - —1
7 PR —— [
T shof 'F T
¥ ——ap ' r—— 9

so there exists a unique morphism f~!'F : f~'.% — f~14. It is clear from the universal property that
if [, '(FoG)=f;'Fof G, and f,'Id = Id, then the same will be true for f~'(F o G) and f~'Id.
From our deﬁmtlon of the f,~ 1F inverse on open sets however, both the statements in the presheaf case
are clear, hence they hold in the sheafification case. It follows that f~! is a functor Sh(Y) — Sh(X). O
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We can now finally prove the main claim:

Theorem 1.3.1. Let f: X — Y be a map of topological spaces, then the functor f=* : Sh(Y) — Sh(X)
is left adjoint to f. : Sh(X) — Sh(Y), in the sense that for all object 4 of Sh(X), and all objects F of
Sh(Y) there is a natural isomorphism:

Homgyx)(f~'7,%) = Homgy (v (Z, f.¥)

Proof. Let # € Sh(Y), and 4 € Sh(X), and suppose that F : fL.F — 9 is a sheaf morphism; we want
to define a sheaf morphism F': % — f.%4. Let V be an open set of Y, then we want F' to be a map on
open sets:

Fy: Z(V) —9(f7H(V))

Note that f~!(V) C X, and that f(f~'(V)) C V, hence there exists a map ¢y : Z(V) = f, ' Z(f~1(V)),
which takes the section s € .Z(V) to the equivalence class [V,s] € f, ' Z(f~1(V)). We then have the
following chain of maps:

FV) — s (7 F) (V) s (fF) (V) — s g (V)

We define Fy as this composition for all V C Y. We check that this composition is compatible with
restriction maps. Let V; C V; C Y, then:

F\/;(S)h/] = 9“2 o Ff—l(vl) OShf—l(Vi) Ol/}w(s)

I
However, recall that the restriction maps on f.¥ are given by 0“2 = 9;_15“2‘3, hence:

Ey, (s)lv, =07-1(y;) © Fr-1vy) 0 shy-1(v;) ot (5)

“1v,
:Ff—l(vj) ] Shf—l(‘/j) 09;,182; [¢] fl/)Vi (S)

where the final 9;:82; is the restriction map (f,'.Z)(f~'(Vi)) = (f; *Z)(f (V). We see that:

b, (s) = [Vissli € (f, " 2) (1 (V)
then:
Sy, - B
0 (Vi sli) = [Varsly € ()T (Vy)
However, note that we clearly have that f(f~*(V;)) C V}, so:
—
072 (Vi slo) = [Vy sl ]y = v (slv,)
where ¢y, is the map .7 (V;) = (f, '%)(f~(V;)), hence:
Fy,(s)lv; =Fg-1(v;) 0 shy-1(v;) oy, (slv;)
=Fy, (slv;)
We have thus obtained a set/group/ring homomorphism:

® : Hom(f'.#,9) — Hom(.Z, f.9)
F+—F

We will define a set/group/ring homomorphism in the other direction and show that they are inverses of
one another. Let G : .# — f.% be a morphism, then we wish to find a G : f~1.% — ¢. By the universal
property of sheafification, it suffices to define a map Gy : f, 1F - 4. Let U C X be open, then on open

sets we want ép to be a map:

(f; ' 7)U) — 4(U)

P
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For all V; such that f(U) C V;, it thus suffices to define maps &y, : #(V;) — 4(U) which commute
with restriction by the universal property of the colimit. Let s € .%(V;), and note that we have a map
F (Vi) = 9(f~1(Vi)). Note that U C f=1(f(U)) C f~1(Vi), hence U C f~1(V;). We thus define &y, by:

gu(s) =6l o Fiu(s)
Suppose that V; C V;, and f(U) C V}, then we see that:

&v, (slv,) =07, 7

— 1y, —1v
=0f, o011 o Fui(s:)
=0 " o Ry (s)

=v;(s)

We thus obtain a unique a map (f, .7 )(U) — 4 (U) given by:

o Fy,(slv;)

A

(Gpu([V;s]) = &v(s)

We check that this is actually a presheaf morphism. Let U; C U;, and suppose [V, s]; € (fp_lﬂ)(Ui).
Then we have that:

(G (Vash)lo, = 08 o € (s)
where &l is the map 7 (V) — 4(U;). It follows that:

(Gp)u. [V, s]0)u, :95;3 o 0,’21(‘/) o Fy(s)
=05, ") o Fy(s)
=€ (s)
=(Gp)u, ([V: 5l;)
=(Gp)u, (V. slilu,)

SO ép is presheaf morphism, and it follows that there exists a unique morphism G- 17 — 4. We now
define the set/group/ring homomorphism:

U : Homgy(y)(Z, f+4) — Homgp(x)(f .7, 9)
Gr— G
Let F' € Homgy(x)(f~1%,%), then we want to show that ¥ o ®(F) = F = F. Tt suffices to check that
the two agree on arbitrary open set. Let U C X be open, and take (s;) € (f~1.%)(U), where (s;)

is a sequence of stalks such that for all x there exists an open neighborhood of z, U,, and a section
Ve, f*] € (f; '%)(Us) such that for all y € U,, we have:

Vo, [¥ly = [Us, [Va, f7]] = 8y

Now, ﬁ’U((SI)) is the unique section in ¢4(U) such that:

Fo(s)) v, = (Bp)u, (Ve £7])

We see that by our previous work:

2 -1 ~
(Fp)v, (Ve £71) =08, ") o By, (f7)
-1
=07, W) o Fyoa v,y 0 shya v, oy, (F7)
:FUI o ShUI 095;1(‘/1) o Q/JVI (fm)
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Note that ¥y, (f*) = [Va, f*] € (fpflf)(ffl(vm)), so the restriction to U, is equal to [V, f*] €
(f; F)(U,), we thus have that:

~

Fu((s2))|v, =Fu, oshu, ([Va, f*])
=Fy, ((sy)yev,)
=Fy, ((s2)|v,)
=Fu((s2))lv,

Since {U,} is an open cover for U, and we have that:

(Fu((s)) = Fu((s2)]. =0

for all z, it follows by sheaf axiom one that the two are equal on U, hence:

Vod=1Id

To show the other direction, let G € Homgy, (v (-#, f+%), then we want to show that Wo®(G) = G=aG.
As before it suffices to prove this on open sets. Let V' C Y be open, and take s € .%(V), then we that:

O

v(s) = Gposhyiqy) oty (s)
Now note that G ;-1 osh;—1(V) = (Gp)ffl(v), hence:

G (s) = (Gp) -1 ([V25))

where [V, s] € (f;*#)(f~'(V)). Then by our work defining the map ®, we have that:

Gy (s) = &v(s) = 0],V 0 Gy (s) = Gy (s)

implying that é = @, and that:
PoV¥ =1Id
It follows that:
Homgy,x)(f~'Z,¥) = Homgy,(v)(ZF, f¥)

as desired. 0

We end this section with the following corollaries:
Corollary 1.3.2. IfU C X is open, and v : U — X the inclusion map, then for every sheaf F on X,

we have that .=1.F is naturally isomorphic to F|y .

Proof. Note that ¢ : U — X is a homeomorphism onto it’s image, and it’s image is open in X, hence ¢ is
an open map. Let W C U be open, then we claim that every element in (1 1.%)(W) can be written as the
equivalence class [W, s] for some s € F[y(W) = F(W). Let [V, t] € (,”F)(W), then (W) =W C V,
hence we have that:

[Vit] = W, t|w]

so without loss of generality we can work with equivalence classes of the form [W,s]. We now define a
map:
¢ 2 (1, ' F)W) — Flu(W)
[W,s] — s
Note that this well defined as if [W, s] = [W, ], then there exists some V' C W such that «(W) =W CV

such that t|y = s|y. However V.C W and W C V implies that W =V, hence s = ¢. This induces a map
on stalks given by:

& (1,7 F)e — (Flv)a
[Vx’ [VI»SH — [vas]
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where V. is some open neighborhood of z. Suppose that [V, [V,, s]] — 0, then this implies that:
5|Z,I = O

where Z, is some open neighborhood of z such that Z, C V,. We want to show that [V, [V, s]] = 0; we
note that:

(Va,sllz, = [Vi, 8] € (fp_ly)(zw)

which is equal to [Zy, $|z.] = [Za, 0] which is the zero section. Hence [V, [V, s]] = 0. The map is clearly
surejctive, hence ¢® is an isomorphism for all x. It follows that induced map on sheaves induces a stalk
isomorphism for all x, thus by Lemma 1.2.1 we have the claim. O

Corollary 1.3.3. A morphism f : X —'Y of locally ringed spaces is equivalent to the data of a continuous
map f: X =Y, and a morphism of sheaves f : f 0y — Ox. In particular, there exists natural stalk
maps fo : (Oy)f@) = (Ox)z which agree with the direct image counter part, and vice versa.

Proof. The first statement follows from Theorem 1.3.1. Note that we have map f, (f10y)e — (Ox)a,
and moreover that there exists an isomorphism (f, ')z : (Oy) sm) = (f; ' Oy)a, given by:

where [V, s] is the equivalence class defined in Proposition 1.3.4, and U is any open set of X such that
f(U) C V. We define the map f, by:

fo= fx osh, O(fgjl)w

and note that if [V, s](z) € (Oy)f(a), then:

fw([U7 S]f(x)) :fx © Shw([Ua [V’ 5]]90)
Now let f* be the map induced by by f under the isomorphism ®. It follows that:

(f)a © Fhay(Vislp) = [ V), FE(9)]

However, f‘”} is given by:

FE(8) = frvy oshy-1yy ooy (s)
We note that 1y is the map Oy (V) — f, 1Oy (f~1(V)), given by s — [V, s]. It follows that:

(F)e © £y (Vs 8l s) =UF 2 0V), Frvry @ sy (P71 (V), [V s])o)
=fo osha(IFH(V), V2 8lla)

We note that f~'(V) is an open set of X such that f(f~'(V)) C V, so since (f, '), is independent of
the choice of U, we can choose U = f~1(V), implying that:

fo = frosheo(f) = (f)s 0 f
Now suppose that we are given the map f?: Oy — f,Ox, and that f = ¥(f*). We want to show that:
fo=(f)ao [y = froshao(f71)s
Note that:
faoshy = (fosh), = f,

where fp is the presheaf morphism f,- L0y — Ox given on open sets U C X:

Fo)o([Vs)) = 05 Yo fh(s)
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Let [V, s]f(z) € (OY)f(a), then we have that:

while:
(fp)a o (FD)a(Vislp@) =(Fp)a(lF (V) [Vis]la)
= (V), 00 o F s
=[f7 V), i (9)]
implying the claim. O

We can now prove the final statement in Lemma 1.3.1.

Proof. Let f,g: X — Y be morphisms of (locally) ringed spaces, such that f = g, and f, = g, for all
x € X, then we have that f~'0y = g~ '0x, that fp_lﬁy = g 10x, and that (f=1), = (¢7').. It follows
by the above proposition that since f, = g,:

fm osh, O(f_l)w = gz oshy O(g_l)m

where f and § are the images of f* and g* under the isomorphism W¥. Note that sh, o(f~!), is an
isomorphism, hence we can apply the inverse map to both sides on the right and obtain that for all
e X:

A

fac:gac

for all x € X. It follows that f = § as maps f~ !0y — Ox, so under the isomorphism ® we have that
ft = g%, as desired. O

We end our section on locally ringed spaces with the following corollary of Theorem 1.3.1:

Corollary 1.3.4. Let f : X — Y be a morphism of topological spaces with sheaves F on X and 4 on
Y. Then there are canonical morphisms:

G:9 — f.f'9 and F:Z - f 1.7

If f is a closed immersion (in the topological sense) then G is surjective. If f is an open immersion (in
the topological sense) then F' is an isomorphism.

Proof. Note that by Theorem 1.3.1 if # is a sheaf on X and ¥ is a sheaf on Y, we have a natural
isomorphism:

Homgy,x)(f~'¥,.7) = Homgy(v) (¥, f+¥)

Let .# = f~'9, then we have that the identity morphism Id C HomSh(X)(f_lg, f719) corresponds to

a unique morphism Id : 4 — f.f~'9%. Recall from Theorem 1.3.1 that this map is given on open sets
V CY by:

sh Id

G(V) —2 s (9 (V) —— () (V) —— () (V)

where 1y takes a section s € 4(V) to [V, s] € f,'9(f~'(V)). Now suppose that f is a closed immersion,
and let y € Y, if y ¢ f(X) then stalk of (f.f %), is automatically trivial so Id, must be surjective.
Now suppose that y = f(z) for some z € X, and [V, 8]y € (fof ') p(x) Where s € (f719)(f71(V)).
Since s € (f719)(f~*(V)), we have that:

s=(tp) € H (fp_lg)l
pES~H(V)

where for each p € f~!(V) there is a U, C f~(V) and a section h € f,;'9(U,) such that hy = t, for
all ¢ € U,. Let p = z such that f(x) = y as above, then there exists an open subset U, C f~(V)
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and a section h € (f, '9)(U,) such that h, = t,. In particular, we have that the isomorphism sh () :
(f7'9)e = (f7'D)s sends hy to s;. For some Z C Y such that f(U,) C Z, and some g € 4(Z), we have
that h = [Z, g]u,. Note that there is a smallest subset Z such that f(U,) = Z N f(X), so without loss
of generality we can assume that f(U,) = Z N f(X), and that f~1(Z) = U,. We claim that g € 4(2)
satisfies I~df(w) (9fx)) = [V 8lf) € (f*f’lg)f(w). Indeed, we write that g¢,) = [Z, g]f(») then:

1 (2) (95 () = [Z,1d2(9)] f(a)

we have that:

Idz( ) —Idf 1(Z) (e} Shffl(Z) sz(g)
=shy-12)([Z, g]v.)

where (t,) = s|u,, but U, = f~1(Z), so we have that:

Visl@) = 12, 8lu ) p2) = W) (97(2))

It follows that Id () is surjective implying the first claim.

Now, suppose that f is an open embedding, and note that we again have an identity morphism of
sheaves on Y given by:

Id: fi. — fi.F

which induces a unique morphism Id: f~1f..Z — Z. This map is the one induced by the sheafification
of the map Id,, : f; ' (f+.#) — .F given on open subsets of U C X by:

(1) ([V,s]) = v (s) = 0F, V) oTdy (s)

Note that if [V, s] € f, ' (f+#)(U), then we have that s € f,.Z# (V) = .Z(f~(V)), and f(U) C V. We first
claim that [V, s] = [f(U),s|rw)] € f; ' (f+F)(U). Note that f(U) is open, and that f(U) C f(U)NV, so
essentially by definition we have that [V, s] = [f(U), s| ). It follows for any [V,s] € f, ' (f«.Z)(U) we
can write [V, s] as [f(U), s|f)]. Now we see that:

(1dp)u ([f(U),5]) = 07 o 1y (s) = s € F(U) = f.F(f(U))
This is then trivially an isomorphism, so we have that f° L(f«.7) is actually a sheaf, and that sh :
f;l(f*ﬁ) — f71f..Z is an isomorphism. Since Idosh = Iap, and both sh and 121,, are isomorphisms, we

have tat Id is an isomorphism as desired. O

1.4 The Structure Sheaf of Spec

Let A be a commutative ring; in this section we wish to equip the topological space Spec A with a sheaf
of rings such that Spec A is a locally ringed space. Note that A, is a local ring by [ixample 1.3.1, so it
would make sense to construct a sheaf on Spec A such that the stalk at p € Spec A is A, (our choice of
notation for stalks and the localization of a ring is intentionally suggestive). We begin with the following
definition:

Definition 1.4.1. Let X be a topological space, and B be a basis for the topology of X. A presheaf on
a base is the data of a set/group/ring, F(U) associated to each open set U € B, and restriction maps
09 : F(U) — F(U) whenever U C V, such that 6}, o 0¥ = 6. A sheaf on a base is a presheaf on a
basis satisfying analogues of sheaf axioms one and two from Definition 1.2.1. Explicitly:

i) Let {U;} C B be an open cover for U € B, then if s,¢ € F(U) such that s|y, = |y, for all ¢ then
s =1.
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1) Let {U;} C B be an open cover for U € B, and s; € F(U;) sections such that for all basic opens
Uij cU;n Uji

SilUy; = SjlUy;

for all ¢ and j, then there exists an s € F(U) such that s|y, = s;.

We now show that sheaves on a base induce a sheaves on the total space which are unique up to
unique isomorphism.

Theorem 1.4.1. Let X be a topological space, B a basis for the topology on X, and F a sheaf on the basis
B. Then, there exists a sheaf F on X induced by F satisfying the following universal property: for any
sheaf 4, and any collection of set/group/ring morphisms ¢y + F(U) — 4(U) satisfying 05 0 dy = ¢y 00Y
for allV C U € B, there exists a unique sheaf morphism F : % — 4, such that for allU € B the following
diagram commutes:

Z(U) Fu G(U)
1/1‘ [ /
L

F(U)

where Yy is an isomorphism.
Proof. For all x € X, we define the stalk F, as:
Fo = 1im F(U)
Usz

where we are clearly taking the colimit over B, partially ordered by U < V' if V' C U. The stalk is then
the set of equivalence classes satisfying the same equivalence relation as the usual case, just restricted to
basic sets. For each W C X open, we define the set/group/ring by .7 (W):

F(W) = {(sz) € H Fo:VyeW,3U e B,y e U, and 3f € F(U),Vz €U, f, :sw}
zeW

In other words (s;) € [],cyy Fz is an element of .7 (W) if for each y € W, we can find an a basic open
set U containing y, and a section f € F(U) such that the sequence (f;) € [[,cy Fz agrees with (s,) on
U. The restriction map 0% is then given by the restriction of the projection:

II7—1]%

zeW reZ

zecU

to the sets/groups/rings & (W). The same argument as in Proposition 1.2.3 demonstrates that the
restriction of the projection to .% (W) has image in .# (Z) when Z C W, and moreover that 6Z 06} = 0% .
It follows that the assignment Z — .#(Z) defines a presheaf on X.

We show that .Z is a sheaf. Suppose that {W;} is an open cover of W C X, and that (s;) € F (W)
satisfies (s;)|w, = 0 for all W;. It follows that:

(SI)|W1 = (SmEWi) =0

implying that s, is zero for all x € W;. Since {W;} covers W, it follows that for all x € W we have
sz =0, hence (s,) = 0.

Now suppose that we have (s%) € .Z(W;) such that that:
(st)lwinw, = (sh)lw.nw,
hence we define an element (s;) € [, F by:
(52) = (57)

whenever x € W*. This is well defined since si, = s whenever z € U; N Uj, so we need only show that
(sg) € Z (W), but this is clear. Indeed, for all z € W, there exists an open set W; such that s, = s,
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however since (s%,) € .7 (W;), there exists a basic open U and a section f € F(U) such that f, = s} = s,
for al y € U. We can do this for all z, hence (s,) € Z (W), and clearly restricts to (sZ) for all i. It follows
that % is indeed a sheaf.

We define ¢y : F(U) — F(U) as follows: let (s,) € Z(U), and let U € B, and {U,} be any open
cover of U by basic opens such that for each x € U there is an f* € F(U,) such that s, = f; for all
y € Uy. We set ¥y ((sz)) to be the unique element in F(U) satisfying ¢y ((s))|u, = f* for all U,. Note
that if such an element exists, it is independent of the cover and sections chosen. Indeed if {V,} is an
other cover with sections e”, then we denote the corresponding section ¢f;((sz)). It follows that since
V5 ((s2))|v, = €*, we have for all y € U:

Y ((s2))y = €y =8y =1[, = Yu((sz))y

Since the sections agree on stalks, we need only show that the natural map F(U) — [[,cy Fe is an
injection, but this is clear by the same argument in Lemma 1.2.2. We now show such a section exists.
Clearly, we need only show that f*|y, = fY|u,, for all Uy, C U, NU,, but this is vacuously true, as for
any such U, we have that fJ = s, = fY for all z € U,, C U, NU,, so by the preceding remark it must
follows that f*|y,, = fY|v,,-

We now show that ¥y is an isomorphism. Note that:

Yu((s2))y = sy

hence if ¥y ((sz)) = 0, we have that Yy ((sz))y = 0 for all y € U. It follows that s, = 0 for all y € U,
hence (s;) = 0. Moreover, if s € F(U), then sequence (s,) € [[,cy Fz clearly lies in .#(U), and by
definition we have that for all y € U:

Yu((s2))y = sy

for all y € U, hence ¢y ((s,)) = s implying the claim.

Now suppose that ¢ is a sheaf, equipped with morphisms ¢y : F(U) — 4(U) for all U € B, such
that 0¥ o ¢y = ¢y 0 6Y. We define a morphism F : .# — & on generic open sets W C X as follows: let
(sz) € F(W), then there exists an open cover {W,} of W by basic opens, along with sections f* € F(W,)
such that f; = s, for all y € W,. Then we set Fyy((s,)) to be the unique section of & (W) such that
Fyw ((s2))|lw, = éw, (f*). If this section exists, then it is well defined by the same argument as in the
Yy case. We now show such a section exists; we need only ow, (f*)lw,nw, = ow, (fY)lw.nw,. Cover
W, N Wy, by basic opens V;, then we know that V; C W, and V; C W, for all 7. Since f* and fY agree
on all open subsets of W, N W,, it follows that for all V;:

(ew, (f)lwonw, — 0w, (fY)lw.aw,)

v, =0
hence by sheaf axiom one the two agree on W, NW,. Now let U be a basic open, we want to show that:
Fuy =9ouoyy

Take (s;) € F(U), then there is a unique section f € F(U) such that ¥y ((s;)) = f. In particular,
fz = s, for all x € U. Since our definition of Fy is independent of our cover and choice of sections,
choose the trivial cover {U} and the section s € F(U). Since there is nothing to glue over, it follows that:

Fy((s2)) = ou(f) = ov o Yu((sz))
implying the claim. O

Corollary 1.4.1. Let X be a topological space, B a basis for its topology, and F a sheaf on B. Then the
induced sheaf F is unique up to unique isomorphism.

Proof. Suppose that ¢ is any other sheaf that satisfies the universal property, i.e. ¢ is a sheaf on X
equipped with isomorphisms ¢¥ : ¢(U) — F(U) for all U € B, such that for any other sheaf % with
morphisms ¢y : F(U) — #(U) which commute with restrictions on basic opens, there is a unique
morphism ¢ : 4 — . Now note that % as constructed in Theorem 1.4.1 comes equipped with
isomorphisms ;' : F(U) — Z(U) which trivially commute with restrictions on basic opens. It follows
that there exists a unique morphism F : ¢4 — .%; we show that this is an isomorphism.
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Let g, € ¥,, and note that g, can be written as an equivalence class [U, g] where U is a basic open
set. Indeed, if g, = [V, ¢'], then V is the union of basis open sets, hence there must be some basic open
set U containing x. It follows that:

[Vv g/] = [Uv gI‘U]

as desired. We see that:
Fy(g2) = [U, Fu(9)] = [U, 4" 0¥ (9)]

Suppose this equals zero, then there is an open set V' C U such that 1/1[}1 o (g)|v is zero. Without loss
of generality we can take V' to be a basic open by our previous remark. It follows that:

byt o (glv) =0 = glv =0
as 7,/1‘71 o z/;‘ff is an isomorphism. However, we have that:
[U.g] =[V.glv] =0

hence g, = 0. Now let s, € .%,, we can represent s, as an equivalence class [U, s], where U is a basic
open. Since ;! o ¥ is an isomorphism, it follows that there exists a unique g € ¢ (U), such that
1/151 0¥ (g) = s. We thus have that F, is an isomorphism for all z, hence ¢ is uniquely isomorphic to
Z as desired. O

We now prove two results regarding sheafs on a base as a sanity check that things work as assumed.
In particular, it should stand to reason that the stalks of a sheaf on a base are isomorphic, and that
restricting a sheaf on to a sheaf on a base yields the same sheaf.

Proposition 1.4.1. Let X be a topological space, B a basis for its topology, and F a sheaf on B. Then
the induced sheaf F satisfies F, = F, for all x € X.

Proof. Note that we have morphisms ¢y : F#(U) — F, for all z € U C X given by:

¢u((sy)) = 5z

These maps trivially commute with restriction. It follows by the universal property of the colimit that
there exists a unique morphism ¢, : %, — F, given by:

¢z ([U; (s)]) = 52

Suppose that s, = 0, then note that since (s,) € Z (U), there exists an open neighborhood V,, of z, and
a section f* € F(U) such that f = s, for all y € V.. We can thus write s, = [V, f*], however this is
zero, so there exists another open set such that € Z, C V, such that f*|z, = 0. Since stalks commute
with restriction, it follows that (f*|z,), = s, for all y € Z,. However, this means that s, = 0 for all
Yy € Z, hence:

(sy)lz. = 0= (U, (sy)] = [Ze, (5y)]2x] = 0

o ¢, is injective. Moreover, suppose that s, = [U, s] € F,, then we see that wal(s) is a sequence (t,) in
Z(U) which satisfies t, = s, for all y € U. It follows that:

¢x([U7 1/][}1(8)]) =ty =Sy
hence ¢, is surjective and thus an isomorphism as desired. O

Proposition 1.4.2. Let F be a sheaf on X, and let B be a basis for the topology on X. Then for all
U € B, the assignment U — F(U) = Z(U) defines a sheaf on a base such that the induced sheaf is
uniquely isomorphic to F .

Proof. First note that since % is a sheaf, sheaf on a base axiom one is trivially fulfilled. Now let U
be a basic open, and {U;} an open cover of U with sections s; € F(U;) such that for all basic opens
Uij cU;n Uj we have:

Si|U;; = 851Uy
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Note that we can cover U; N U; by all such Uf; indexed by k, and that since s; € F(U;) = .Z(U;), we can
restrict each s; to U; N Uj. It suffices to show that:

S; UiﬁU]‘ = Sj UiﬁUj

However, we have that for all Ui’} cU;NU;:

(silu,nu; — 55 UiﬂUj)|Ufj =0
hence by sheaf axiom one s; and s; agree on U; NUj. It follows that since .# is a sheaf there is a unique

section s € F(U) = % (U) such that s|y, = s;.

We show that % satisfies the universal property in Theorem 1.4.1, and thus by Corollary 1.4.1 is
uniquely isomorphic to the induced sheaf. For all U € B, let ¢y : F(U) — 4(U) be a collection of
morphisms which commute with restriction on a basic open sets, and note that ¢y : Z(U) — F(U) is
the identity morphism for all U. We thus need to construct a map F : . % — ¢ such that Fy = ¢y. Let
W be an arbitrary open set, and {W;} an open cover by basic opens. If s € .7 (W), then we define Fyy(s)
as the unique element in ¢(W) such that Fy (s)|lw, = ¢ow, (s|w;,)-

Suppose such an element exists, and let {V;} be a different open cover of W by basic opens. Consider
VinWj, and let Z;; C V; N W; be any basic open set, then we have that:

dw, (slwi)lz,; = ¢z, (8lz,,) = ovi(slvi)lz,;

It follows that since ¢ is a sheaf, ¢w, (s|lw,) and ¢y, (s|v;) agree on overlaps W; NV;. If Fyy(s) = g is the
element such that g|lw, = ¢w, (s|w,), and Fyw (s) = h is the element such that h|y, = éw, (s|v;), then we
have that for all V; N Wj:

(h—g)

Since all such intersections form a cover for W, and ¢ is a sheaf it follows that g = h, so Fyy is independent
of the chosen cover.

vinw,; =0

Now we show that Fyy (s) exists. We need only show that ¢w, (s|w,)
for all basic open sets W;; C W; N W; we have that:

so since ¥ is a sheaf we must have that ¢w, (s|w,)

winw; = ¢w; (85)|w.nw,, however

Wi = (bWij (S|Wij) = (ij (S|Wj)‘wij

winw; = éw; (5;)lwinw,, 80 Fiy(s) exists.
We need to check that Fy commutes with restrictions. Let Z C W, then we have an open cover of

Z given by {Z N W;}. For each 4, we can cover Z N W, by basic opens Z;; such that Z;; C W; for all j.
It follows that:

Fy(s|2)|z,; = ¢2.,((s12)|2,,) = 02, (sz,) = dw.(slw.)|z, = (Fw (s)lw.)|z,, = Fw(s)lz, = (Fw(s)]z)
Since the set of all Z;; cover Z, we must have that Fz 092/ = 0?’ o Fyy, hence F defines a sheaf morphism.
It is then clear that:

Fy =9u
whenever U is a basic open, implying the claim. O

Corollary 1.4.2. Let % and ¥ be sheafs on X, and B a basis for the topology on X . Then, any morphism
F: F — % is determined by the morphisms Fy : % (U) — 9 (U) where U is a basic open. In particular,
F is an isomorphism if and only if Fy is an isomorphism for all U € B.

Proof. By the preceding proposition, we know that .# satisfies the universal property of the sheaf on
a base defined by F : U — Z(U) for all U € B, hence if ¢y : F(U) — 4(U) is some collection of
morphisms which commute with restrictions on basis opens, then we have a unique map F : . ¥ — 9.
Now suppose we are given a map F : % — ¥, and define ¢y : F(U) — 4(U) by ¢y = Fy. Since
Yy : F(U) = F(U) is the identity, it follows that F trivially satisfies the diagram in Theorem 1.4.1, and
is thus the unique morphism determined by ¢y = Fy7, implying that F' is determined by the morphisms
Fyr as desired.

Zij
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Now suppose that F'is an isomorphism, then clearly for all U € B we have that Fy is an isomorphism.
Now suppose that for all U € B we have that Fy; is an isomorphism. If we can show that F}, : %, — ¥,
is an isomorphism for all x € X then we are done. Let [U,s] € .%,, and suppose that F,([U,s]) =
[U, Fiy(s)] = 0. Then this implies that Fyy(s)|y = 0 for some V' C U. Since V is the union of basic opens,
we can further restrict to a basis open W to obtain that Fyy(s)|w = 0, which implies that s|y = 0, as Fy
is an isomorphism. It follows that [U, s] = [W, s|w] = [W,0] = 0, so F; is injective. Now let [U,t] € ¥,
and let W C U be any basic open set, then [U,t] = [W,t|w], and there is a unique element s € % (W)
such that Fyy(s) = t|lw. It follows that [W, s] € %, satisfies [W, Fyy(s)] = [W,t|w] = [U, t] hence F is
surjective and thus an isomorphism, implying the claim. O

Now let A be a commutative ring; consider Spec A with the Zariski topology, then the set B = {Uy}sca
of distinguished opens forms a basis for the topology on Spec A by Lemma 1.1.2. We define a sheaf on B
via the assignment:

Uf — Af (1.4.1)
where Ay is the localization of A at f. By Lemma 1.1.3 we also have that Uy = U, if and only if
V{f) = V/(g9), and by Lemma 1.1.4 we then have that Ay = A,, so the assignment is well defined. We

need the following lemma:

Lemma 1.4.1. Let A be a commutative ring, then every open cover of Spec A has a finite subcover. In
particular, every distinguished open can be written as the finite union of distinguished opens.

Proof. Let {V;} be an open cover of A, then we have that:
Spec A = U V;
For each i we have that:
J

hence:

SpecA:U UUquz
i Ji
= U Ufji

4,Ji

Uvisne

4,74

V(£

1,53

=V )

1,04

c

It follows that since V((1)) = Spec A, we have that 1 can be written as a finite linear combination:

1= arfi
k=1
where fi, = f;, for some j;. We thus have that:

Spec A = U Uy,
k=1
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By hypothesis we have that each Uy, is contained in a V4, hence:

Spec A = U Vi
k=1

so the cover {V;}, admits a finite subcover {V;,}}_;.

Let Uy be a distinguished open, and {Uy, } an open covering of Uy. We see that:
Up = (V({) = (V <Z <gi>>>

\/W= Z<gi>

K2

It follows by Lemma 1.1.1 that:

It follows that there exists an m such that f™ € »". (g;) hence

p
=2 a9
j=1

for some a; € A and g;. We want to show that:

Let a € \/(f), then a® = f* . b for some b € A, for some n € ZT; we see that:

arm :fmk Ly

so \/{f) C Z;;l (gj). Now let b € 1/22:1 (g;), then there exists an n € Z* such that:
P
b= ¢
=1

for some ¢; € A. Now we note that b™ € />, (gi), hence b € \/(f) implying the claim. O

We also have the following:

Lemma 1.4.2. Let X be a topological space and F a presheaf on a basis for its topology B, such that
every cover of a basic set by basic sets admits a finite subcover. If the sheaf on a base axioms hold for all
such finite covers, then they hold in generality.

Proof. We begin with sheaf axiom one; let U be a basic open, {U;} an open covering of U, and s € F(U)
such that s|y, = 0 for all ¢. Let {Uj}§:1 be a finite subcover, then we have s|y, = 0 for 1 < j <k, so by
the hypothesis it follows that s = 0 and sheaf axiom one is satisfied.

Now let {U;} be an cover of U, and s; € F(U;) such that for all basic sets U;; C U; N U; we have:
8i|Uij = Sj|Uij
Then there exists a finite subcover {U; };?:1 such that for all basic open sets Uy C U; N Up:

silu,, = siluy,
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It follows by the hypothesis that there exists an s € F(U) such that s|y, = s; for all 1 < j < k. We need
only show that for U; ¢ {U;}¥_, we have s|y, = s;. We have a finite cover of U; by {U; N U;}¥_,, each
U; NU; has a cover of basic opens by {Uijm }m, hence we obtain a cover of U; by basic opens {Uj;j, } such

that Us;m C U; NU; C U;. We see that:

U; Uj U
9U¢jm(s Ui) = (5 Ui) Uijm — SlUijm = erjm ° 9Uj (8) = S5|Uijm = Si|Ujm
It follows that:
ngjm(s U, — SZ‘) =0
for all 7 and m, hence s|y, = s;, implying the claim. O

Proposition 1.4.3. Let A be commutative ring, and B be the basis of distinguished opens for the Zariski
topology on Spec A. Then the assignment (1.4.1) defines a sheaf F on B.

Proof. We first define restriction maps; by Lemma 1.1.3 we have that if Uy C Uy, then there exists an
m € Z* and a € A such that f™ = a-g. Note that we have maps 7y : A — Ay and 7, : A — Ay, and
that the image of g is a unit in Ay. Indeed, we have that:

g r _g-r fm

Lo fmo fmo fm
It follows that there exists a unique map 9? : Ay — Ay given by:

k
()42
f gk: fmk
Now suppose that U, C Up, then we have that there exists a ¢ € A, and an n € Z*, such that ¢" = h - c.
By the same argument we obtain a ring homomorphism:

oF : A — A,
b b-ck
ﬁ}—> gnk

We want to show that 9? ofh = 0’}. First note that we have:
fm:a.gifmn:an.gn:an_c_h

so the map 6/ is given by:

b b-am™ . ck
ﬁ fmnk
Now note that:
b b-ck
h _
oro0 (5) = ()
b-ck.qnk
= fmnk

b
h
s (w)

It is clear that 07" =1d,, , hence F(Uy) = Ay defines a presheaf on B.

We now check sheaf axiom one. Suppose that Uy is a distinguished open set, {Uy, } an open covering
of Uy, and s € Ay such that s|,, = 0 for all 2. By Lemma 1.4.1, and Lemma 1.4.2 it suffices to check
this on all finite subcoverings of Uy, so without loss of generality we suppose that {Uy, } is finite. Since
Uy, C Uy, we have that for each i there exists an m; € Z*, and a ¢; € A such that:

g =ci-f
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Now we note that since f is a unit in Ay, so s = 0 if and only if f*s = 0. Indeed, if s = 0 then clearly
fFs = 0, while if f*s = 0, we have that (f*)~'f*s = s = 0. If s = a/f¥, it thus suffices to show that
ffs=a/1 =0. We have that f*s € ker 9{;, hence there exists an I; € Z* such that:

gi-a=0

Now note that:

Vi - ¢z (90) = ¢z 0
hence there exists a k € ZT such that:
fr= Z giiei
for some ¢; € A. Since each ¢! - @ = 0, we have that:
0= Zglia: Zglicia:a~fk

hence a/1 is zero in Ay.

To check sheaf axiom two, it again suffices to assume that {Uy,} is a finite open cover of Uy. Let
s; € Ag, be sections such that:

Si|Uy; = SjlUy;

for all U;; C Uy, NU,,. Then since Uy, N Uy, = Uy, ,, we have that:
Sz‘|UginUgj = 5j|UginUgj
Since Ug,y, C Uy,,Uy,, we have that there exists k; € Z* and ¢; € A such that:
(9ig)) =gi-c;  and  (gig;)" = gjc;

Clearly k; = 1 with ¢; = g; fit the bill, hence our restriction maps are given by:

hence on overlaps we have that:

Since {U,, } is finite, there exists some K such that for all ¢ and j:
(9i9;)"™ ((gigj)kj cai- gy — (9i9;)" - 4 '9?) =0
We multiply by gf g;-cj to obtain:
0 =(gig;)" (gf"gfj (9:97) " aighs — gl (gigj)kiajgfj)
=(gag;) "t (aigfj - ajgfi) (1.4.2)
Set K’ to be large enough such that expression above holds for all 7, j, and define:

K/
h; = a;g;
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Now since:

VT - \/Z (g5) = ¢Z (g
we have that for some M, there exist ¢; such that:
M= g

We define s to be:

cihi
5= Z M
i
Now note that for each j, we have that g;” = f - b, then the restriction is given by:

CihibM
8|ij - z : n;-M

i 95

We claim this equal to s; = a;/ g;’; examine the expression:

o (Sener e
i
Examine the first term,
k, ’ ’ k ’
> eihi Mgl gl =Y " ai gl WM gl gl
i i

for each i we have that by (1.4.2):

’ / X
i

K _K' _kj K K _k
gi 95 "9;i0i=9; 95 "9; 4

hence we have that:
k. ’ ’ ’ .
> cihi b gl gl = (gf aij) > gf gt
’ M
=95 a;g;’
implying the claim. O

Definition 1.4.2. Let A be a commutative ring, the the structure sheaf of Spec A, denoted Oy, is
the sheaf induced by the sheaf on the base of distinguished opens given by the assignment:

Uf’—)Af

The pair (Spec A, 04) is called an affine scheme'".

Proposition 1.4.4. Let A be a commutative ring, then (Spec A, 04) is a locally ringed space. In par-
ticular, the stalk (O4), is uniquely isomorphic to A, for all p € Spec A.

Proof. By Proposition 1.4.1, it is sufficient to show that F, is a local ring for all p € Spec A, where F is
the sheaf on a base discussed defined by Uf +— Af. Let p € Spec A, then note that if p € Uy, we have that
f ¢, hence f € A—p. It follows that f is a unit in Ay, thus there exists a unique map ¢y : Ay — A,
given by:

"

14This is a tentative definition of an affine scheme, but will be easily seen to be compatible with our future one.

(;Sf:%P—)
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Now suppose that Uy C U, then we have that f™ =b- g, so the restriction map 9? is given by:

k
g a a-b
We want to show that ¢, = @5 0 6%, i.e. that:
a- bk _a
fmk gk

in A,. We want to show that there exists a u € A — p such that:
U - (a~bk~gk—a-ka) =0

However, b¥ - g¥ = f™* so this statement is vacuously true. By the universal property of the colimit

there thus exists a unique map ¢ : F, — A,. Suppose we have [Uy, s] € F, such that:
o([Uy,s]) =0

Since s € Ay, we have that s is of the form a/f*, so we must have that:

7 =0
in Ay, thus there exists a u € A — p such that:
u-a=0
We claim that [Uy,a/f*] = 0; well since u € A — p, we have that u ¢ p, hence p € U,. Note that:
[Ur,a/f*) = [Upua/ f*|v.]
Since Uy, C Uy, we have that there exists some n € Z7* and some ¢ € A such that:
(u-f)*=c-f
however, n = 1, and ¢ = u fits the bill, hence our restriction map is given by:

a~uk

(u- f)F

however a - u = 0, hence we have that the above expression is 0, implying ¢ is injective. Now suppose
that a/r € A, then r € A —p, hence p € U,. It follows that:

o([Ur,a/r]) = a/r

implying that ¢ is surjective and thus an isomorphism as desired. O

a/fk+—>

We also have the following facts:
Lemma 1.4.3. Let (Spec A, O4) be an affine scheme, then there are unique isomorphisms 04(Uy) = Ay,
and O4(Spec A) = A.
Proof. By Theorem 1.4.1 we have that 04(Uy) = Ay as F(Uy) = Ay. Moreover, note that:
Uy={peSpecA:1¢p}

which is equal to all of Spec A, because no prime ideal contains 1. We easily see that A; = A, implying
the claim. O

We now determine some topological properties of affine schemes.

Definition 1.4.3. A topological space X is irreducible if it is non empty, and cannot be written as the
union of two proper closed subsets. A subspace Z C X of a topological space is called an irreducible
subspace if it is irreducible in the subspace topology. A irreducible component of a topological space
is a maximal irreducible subspace.
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Lemma 1.4.4. Let X be a topological space which is irreducible. Then X is connected and every open
subset of X is dense.

Proof. Suppose that X is disconnected, then X = U UV for some disjoint open sets U and V. It follows
that since taking the closure over binary unions distributes that:

X=UuUV

so X is reducible. The claim follows by the contrapositive.

Now let U C X be any open set, and suppose that U is not dense. It follows that U # X, and that
the compliment U¢ is closed. We claim that:

X=UuU*
However this is vacuously true, as:
X=UUuU‘=X=UuUUc=UUU"
hence X is reducible and the claim again follows by the contrapositive. O

Lemma 1.4.5. Let A be an integral domain, then Spec A is irreducible. In particular, every open set is
dense, and Spec A is connected.

Proof. Recall that if A is an integral domain then we have that a-b = 0 if and only if a or b is zero. This
then implies that that (0) is a prime ideal of A, and is thus a point in Spec A. Now suppose that Spec A
is reducible, then we have that by Proposition 1.1.1:

Spec A=V(I)UV(J)=V(INJ)=V({0))
for some ideals I and J. Lemma 1.1.1 then implies that:
VInT = VO
Since A is an integral domain, we must have that /{(0) = (0), so
VIndg =(0)
However, we note that /T N J = v/1.J, then we have that:
VIJ = (0)

However, this implies that I.J C vV IJ = (0), hence IJ = (0). It follows that every finite sum of the form:
> ki
i

where i, € I and ji € J is zero, hence either I or J is the zero ideal. The claim then follows from the
contrapositive, and Lemma 1.4.4. O

Note that when A is an integral domain, we have that every nonempty open set contains (0). Indeed,
note that Uy is the empty set, and that if f # 0, then (0) € Uy as f ¢ (0). In particular this implies
that Spec A is not Hausdorff, as if p and (0) are both contained in some open set U, then any open set
containing p will also contain (0). In general the Zariski topology will be non Hausdorff.

Example 1.4.1. Let k be a field, then we set A} to be affine scheme:
A} = Specklzy,..., ]

Note that in this case k[z1, ..., z,] is an integral domain, so in particular A} is irreducible, and connected.
The singleton set consisting of the zero ideal is then clearly dense, and so not closed, nor is it open.
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The remainder of this section will be dedicated to demonstrating that the category of affine schemes
is (anti) equivalent to the category of commutative rings. A morphisms of affine schemes f : Spec A —
Spec B is simply a morphism of locally ringed spaces. Let ¢ : B — A be a homomorphism, then we have
an induced topological map f : Spec A — Spec B given by p — ¢~ 1(p). We Want to define a morphism
f*: 0 — f.0s. By Theorem 1.4.1 it suffices to define morphisms ¢, : Fg(U,) — (f04)(U,) for
each g € B which commute with the restriction maps on distinguished opens. This means we need a
morphism:

by s By — Oa(f~(Uy))
We see that:
fﬁl(Ug) =Us(g)
so it suffices to define a map:
bg : By = Ag(g)

and compose it with the isomorphism Agsy — Oa(Ugs)). We define a morphism B — Ay by
b — ¢(b)/1. Note that the image of g is a unit under this morphism, hence there exists a unique
morphism ¢, : By — Ag(y) by

b o)
7 olgh)

Note that the isomorphism Ay — Oa(Ug(y)) is given by:

(i)

p:d(g)Ep
% : -FB(Ug) — (f*ﬁA)(Ug)
b/g" — ((6(b)/9(g"))p) (1.4.3)

It is clear that this map commutes with restrictions on a base, so we have morphism of sheaves:

S0 14 is the map:

fﬁ : ﬁB — f*ﬁA
We now need to check that for all p € Spec A we have that:
fo 1 (OB) () — (Oa)y

is a local ring homomorphism. Let sz, € (OB) p), then without loss of generality, we can take sf(,) =
Uy, (5q)] where g € B satisfies g ¢ f( ) = ¢ (p), and (sq) € Op(Uy) = B,. We than thus write
(sq) = w[}ql(b/gk) for some b/g* € B,. We thus have that:

Fo(Ug: %7, (0/9" ) 5o

(fp)([ fU OwU (Sq)] p))
(Fi)([Ugs g (/9" o))
=[Us(g)> ((6(6))/D(3"))p)]s

We then have the following chain of isomorphisms:

(Oa)p — ]-"pA — A,
o) ¢(b) ¢(b)
l%(g)’ <¢<gk>p>]p o, el

and the same chain of isomorphisms in the opposite direction maps b/g* € Bypy to [Uy, w,}ql(b/gk)]f(p).
It thus suffices to check that if b/g* € my,) C By(y), then ¢(b)/¢(g*) € m, C A,. However, this is clear,
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as if b/g" € my(y), we have that b € f(p) = ¢~ (p), so ¢(b) € p, implying that ¢(b)/¢(g*) € my. It
follows that f¥ is a morphism of local rings as desired.

Note that if ¢ : B — A is a ring homomorphism, then both the morphism of sheaves and the maps
on stalks are fully determined by the induced maps By-1(p) — Ay, and By — Ag,). Moreover note that

the induced morphism f* satisfies YSpec A © fgpec B O ’(/Jg;ec B = ¢, where ¥gpec 4/p is the isomorphism
O4/p(Spec A/B) — A/B. We now wish to prove the following:

Proposition 1.4.5. If f : Spec A — Spec B is a morphism of affine schemes, then f and f* are induced
by a unique ring homomorphism ¢ : B — A.

Proof. Let ¢ = gpec 4 © fgpec 5O zps_plec g3 we first want to show that the topological map f satisfies:

fp)=0""(p)

for all p € Spec A. Consider the stalk (04), = A,, and the unique maximal ideal of A,, m,. We obtain
a field k{s by taking the quotient A,/m,, where m, is the unique maximal ideal of A,. Note that we now
have a unique map:

Ospec A(A) = A — Ay — K,
a+— a/lv+—[a/1]

Denote this map by evy,, then it is clear that wspec 4(p) C kerevy,. Moreover, if a € 9spec a(kerevy ), then
we have that a/1 € mp, hence there must exist some p € p, and some ¢ € A — p such that:

a
f:£:>a-c—p=O
1 c

This implies that either a € p, or ¢ € p, however ¢ can’t lie in p by construction, hence a € p. It follows
that wg;CCA(p) = kerevy,. Similarly, we have that f(p) is a prime ideal of B, so 1/J§p1CCB(f(P)) = ker ev’f(p).
Via the unique 1som0rphlsm of stalks with localizations, and the isomorphism of global sections with the
rings A and B, p (and f(p)) can be identified with global sections which vanish at p (and f(p)).

Now note that:
d)il (p) :(@Z)SpecA o fgpec B © ws_plec B)il (p)
(fgpccB ° z/}g;ccB ( )

(fgpec B 1/)87;)160 B (ker ev )

It thus suffices to show that:

(fgpec B)il (ker GV;) = ker ev’f(p)

as then we will have that:
¢_1(p) = 1pSpeCB(ker evlf(p)) = f(p)

Let s € ker ev’f(p)7 then we want to show that fgpccB(s) € kerev,. Let b € B be the unique element
satisfying spec 5(s) = b, then, urllder the isomorphism. By = (ﬁspecg)f(p), we see that the stal]f Sf(p)
gets mapped to b/1 € By(,). Since s € kerevy(y), it follows .that b/1 € mypq), 50 Sppy € My C
(Ospec B) f(p)- We thus have that fy(ssp)) € my C (Ospeca)p'’, since f is a morphism of local rings.
Hence:

folss,) = [Spec A, f& .. 5(s)]p € m)

and under the isomorphism (Ospec 4)p = Ay, this gets mapped to (Yspec 4 © fépCCB(s))/l = ¢(b)/1, which

must lie in my. It follows from our previous argument that fgpec 5(8) € kerev], implying one inclusion.

P

Now let s € (fspecB)* (kerevy), then we have that fSpecB(s) € kerevy, so the stalk fgpecB(s)P lies in

, hence f(spp)) € m . Now suppose that sz ¢ m F(p) then we have that the corresponding element

15The primed maximal ideals are the unique maximal ideal in the stalk.
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b/1 € By(py does not lie in my(,), but the element ¢(b)/1 € A, corresponding to fj(sz(p)) lies in my,. Since
b/1 ¢ my(y), we know that b ¢ f(p), hence we have that b/1 is a unit in By, and so ¢(b)/1 must be a
unit in A, as well. It follows that m, contains the identity, so it is not maximal yielding a contradiction.
We thus have that sy, € m'f(p), hence s € ker ev’f(p) as desired, implying the claim.

We now need to check that ¢ induces the same map sheaves as fﬁ : Ospec B = f+Ospec 4. First note
that we have morphisms:

fgg O'l/][;gl : -FB(Ug) — f*ﬁSpecA(Ug) = ﬁSpecA(U¢(g))

for each distinguished U, C Spec B, which trivially make the diagram in Theorem 1.4.1 commute. Note
that the equality follows from the fact the topological map is equal to taking preimages by ¢. It follows
that f% is the unique morphism induced by these morphisms on a base, hence we need only show that ¢
induces the same map on distinguished opens. Note that for each g € B, we have a map ¢, : By — Ay(g)
by:

i — ¢(b) _ wSpeCA °© fépecB °© QZ}S:}ecB(b)
gk ¢(gk) wSpeCA © fgpecB © wg;ecB<gk)

Since Y, ,, : Ospec A(Up(g)) = Ap(g) 18 an isomorphism, it thus suffices to show that:

-1
o ’(/)SPEC A©° fépec B° ’(/}Spec B(b)

- -1
wSpecA °© fépec B° ¢SpecB(gk)

Yy © 15, 0 v (b/9%)

Note that ¢, is the unique map which satisfies ¢, o 9!’]3 = ¢/, where ¢’ is the map b — ¢(b)/1, and GgB
is the restriction map, which is simply localization. By the universal property of localization, it then
suffices to check that

(G0, © IE, 05 ) 00y = ¢

WEell, note that isomorphisms 1y, and their inverses trivially commute with restrictions of a sheaf on a
base, hence we have that:

(G, 0I5, 0 0p1) © 05 (b) =05y © (Yspec 4 © Fpee 5 © Vspee ) ()

_¢Spec A© fgpec B° 1/)s_p1ec B(b)
B 1

=¢'(b)
implying the claim. O

We briefly mention the definition of an (anti)-equivalence of categories.

Definition 1.4.4. Let C and D be categories, then C is (anti) equivalent to D if there is a a (con-
travariant) covariant functor F : C — D, such that that for every objects X and Y of C there is a
bijection induced by F'°:

Hom¢g(X,Y) — Homp (F(X), F(Y))
and for every object Z of D there exists an object X of C such that F'(X) is isomorphic to Z, i.e. F is
essentially surjective.
We end with the following corollary:
Corollary 1.4.3. The category of commutative rings is anti equivalent to the category of affine schemes.
Proof. Note that we have a contravariant functor Spec : Ring — AffS given by A — (Spec A4, Ogpec 4).

We see that this if (X, Ox) is an affine scheme, then (X, Ox) is isomorphic to (Spec A, Ospec 4) for some
commutative ring A, implying that Spec is essentially surjective.

We need to show that the induced map:
Hompging (A, B) — Homags(Spec B, Spec A)
o— (f.f%)

161f F is contravariant then clearly the order switches.
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where f(p) = ¢~ '(p), and f¥ is the morphism of sheaves induced by the sheaf on a base morphisms given
by (1.9)'7, is a leeCtIOIl Note that it is clearly injective, as if ¢ = 9, then ¢~1(p) = ¥~ 1(p), and for all
a/g* € Fa(U,) we have that:

¢la) _ Y(a)

o(g*)  (gk)

so the induced morphisms are equivalent as well. It follows that the morphisms of affine schemes are then
equal so the map is injective.

Suppose that (f, f*) : Spec B — Spec A is morphism of affine schemes. Then it follows from Proposi-
tion 1.4.5 that the ¢ = gpec B © fgpecA o wS_plecA is a ring homomorphism that maps to (f, f*), so Spec
is anti equivalence of categories as desired. O

Note that clearly if ¢ : A — B is an isomorphism then (f, f*) is an isomorphism and vice versa.

17The domains and codomains have swithced, but this is just a result of our choice of ¢.



Schemes

2.1 Definition and Examples

We are now in a position to define a scheme in full generality.

Definition 2.1.1. Let (X, Ox) be a locally ringed space, then (X, Ox) is an affine scheme if (X, Ox)
is isomorphic to (Spec A, Ogpec 4) for some commutative ring A. (X, Ox) is a scheme if every point € X
has an open neighborhood U of z such that (U, Ox|y) is an affine scheme. We call such open sets affine
opens, and the topology on X is called the Zariski topology.

Note that a morphism of schemes is simply a morphism of locally ringed spaces, and hence an iso-
morphism of schemes is an isomorphism of locally ringed spaces.

Example 2.1.1. We wish to show that affine schemes are schemes. Let A be a commutative ring,
then for every element p € Spec A, we need to show that there is open neighborhood U of p such
that (U, Ospec alv) is an affine scheme. Let g ¢ p, then U, is an open set containing p; we claim that
(Ug, Ospec Alu) is isomorphic to (Spec Ay, Ospec 4,). We already have from Proposition 1.1.3 that there
exists a homeomorphism 7 : U; — Spec A, given by:

p
n(p) = {gk €Ay :p6p,k20}
so we want to describe an isomorphism:

77ﬁ : ﬁSpecAg — n*(ﬁSpecA|Uy)

First recall that every distinguished open Uy« C Spec A, is equal to Uy,; C Spec Ay, so it suffices to
define a morphism on the set of distinguished opens of the form Uy, for some f/1 € A;. We see that:

1+ (Ospec alu,)(Us /1) = Ospec (™ (U /1)) = Ospec a(Usg)

So it suffices to prescribe maps ¢, : (Ag)r/1 — Aypg and compose with the isomorphism Af, —
Ospec A(Ugg). We set ¢/1 to be the unique isomorphism (Ay)s/1 — Aygy, so we then obtain a set of
isomorphisms ©¢/1 : (Af) /1 — Ospec A(Usg). By Theorem 1.4.1 there thus exists a unique morphism:

77ﬁ : ﬁSpecAg — n*(ﬁSpecA|Ug)

We need to show that nf is an isomorphism (and thus a morphism of locally ringed spaces), and it suffices
to check by Corollary 1.4.2 that n* is an isomorphism on distinguished open sets of Spec Ag. In particular,
since 14 (Ospec alu, (Us/1)) = Ospec 4A(Uyg), we have the following diagram:

#
Uuis; 1
ﬁSpccAg (Uf/l) L ﬁSPCCA(Ufg)
| T
YUs ), 111[;;9
} |
(Ag)f/l b5/t Afg

SO 77?#/1 is the composition of isomorphisms, and is thus an isomorphism, implying that 7* is indeed a

natural isomorphism.

69
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The following lemmas will prove useful in the future:
Lemma 2.1.1. Let (X, Ox) be a scheme, then the following hold:
a) The set of open affines form a basis for the topology on X.

b) The sheaf on a base defined by FX(U) = Ox (U) induces a structure sheaf on X which is isomorphic
to ﬁx.

c¢) For every two open affines U,V , we UNV can be covered by open affines which are simultaneously
distinguished opens in both U and V.

Proof. We begin with a). It is clear that the set of affine opens cover X, so we need only check that any
open set U can be written as the union of affine opens. For each z € U we have an affine open V,, the
collection {V,} then defines a cover of U by:

(V. N U}

Equipped with the subspace topology, we have that V, N U is open in V, = Spec A, for some ring A,.
It follows that since Spec A, can be covered by distinguished opens Uy: , and each Uy; is itself an affine
open of Spec A,, that V, N U can be covered by affine opens V,: isomorphic to (Ug;,Spec Aw|Ugl ). We

thus have that:
v=Jv.nu=JUW
zeU zeU 1
so U can be covered by affine opens, as desired.
We see that b) follows from a) by Proposition 1.4.2.

For ¢), Let U = Spec A, V = SpecB, and ¢ € U N V. The isomorphisms f : U — Spec A and
g : V. — SpecB induce an isomorphism h : f(UNV) C SpecA — g(U NV) C SpecB such that
ho flunv = glunv. So when we say that U NV can be covered by open affines which are simultaneously
distinguished opens in Spec A and Spec B, we mean that that there exists an open cover {W;} of UNV,
such that f(W;) are distinguished opens in Spec A, and g(W;) is a distinguished open in Spec B.*

It suffices to show that every x € U NV has such a neighborhood. Since z € U NV, we have that
f(z) =p € Spec A, g(x) =q € Spec B, and h(p) = q. Since f(UNV) is an open set in Spec A, there is a
distinguished open U, = Spec 4, such that U, C f(UNV), and p € U;. We see that h(U,) is an affine
open subscheme of g(U N V) C Spec B, hence there is an open embedding ¢, : Spec A, < Spec B, such
that ¢, = h|y,. In particular, there is a distinguished open set U, C t,(Spec A,) determined by some
be B. Let

¢ : ﬁSpccB(ba(SpeC Aa)) — ﬁSpccA{L (SpeC Aa) = Aa
Let Uy C Spec A, be the distinguished open associated to ¢(b), then we claim that:
ta(Upw)) = U (2.1.1)
Indeed for any b € B we have:
ta(Usv)) ={ta(p) 1 p € Uy}
={ta(p) : @(b) & p,p € Spec A, }
={ta(p) : b ¢ & (p),p € Spec A, }
=Up N tq(Spec 4,)
however since U, C 14(Spec A,) we have obtained the equality (2.1.1) as desired.
Let ¢(b) = c¢/a™, then by Lemma 1.1.4, Uy identified as a subset of Spec A is the distinguished open
set Ue.q C Spec A. Since tq = h|pv,), it follows that:
h(Uc»a) = La(Ud)(b)) = Ub
hence setting W = f~%(U..,) C UNV is an affine which can simultaneously be identified with distin-
guished opens in both U = Spec A and V' = Spec B as desired.
O

181n the future, as we get more comfortable with the local nature of schemes, we will gradually suppress these isomorphisms
for ease of notation, and simply work with affine opens as U = Spec A, V = Spec B.
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Lemma 2.1.2. Let (X,0x) be a scheme, then (U, Ox|y) is scheme equipped with an open embedding
LU — X.

Proof. If we can show that the locally ringed space (U, Ox|y) is a scheme, then the claim follows from
Lemma 1.3.4. We need only show that for each x € U there is an open neighborhood V,, of x such that:

(Va:; ﬁX|U|VI) = (Vz7 ﬁXle) = (SpeCAa ﬁSpecA)

However, we have that by Lemma 2.1.1 U can be written as the union of affine opens, all of which will
be open in the subspace topology of U. It follows that every x € U must lie in one of these affine opens,
so by the definition of an affine open the claim follows. O

Note that by Lemma 2.1.1 and Corollary 1.4.2, it suffices to define morphisms between schemes on
the basis affine opens.

Definition 2.1.2. Let X be a scheme, and U an open subset of X. The induced scheme (U, Ox|v) is
then called a open subscheme.

Lemma 2.1.3. Let f: X — Y be a morphism of locally ringed spaces, then (f, f*) is an isomorphism if
and only if f is a homeomorphism and the stalk map fr : (Oy) @) — (Ox)e is an isomorphism for all
zeX.

Proof. Suppose that (f, f*) is an isomorphism of locally ringed spaces, then by definition f is a homeo-
morphism, and f* is an isomorphism of sheaves. It follows that:

fﬁ(x) : (ﬁY)y - (f*ﬁx)y

is an isomorphism for all y € Y. Since f is a homeomorphism, it suffices to check that:

(fi)e : (f+OX) p(z) = (OX )2

is an isomorphism for all x € X. We first show that (f.), is injective, suppose that [U, ], satisfies
[f~1(U),s]. = 0, then there exists some open neighborhood of x V' C f~1(U) such that s|y, = 0. Since
f is a homeomorphism, we have that f(V') is an open subset of U, and satisfies:

slpovy = slp-1pvy) = slv =0

s0 [U, 8] () = 0. Now suppose that [V, s], € (0x)z, then we see that f(V') is an open subset of Y, and
thus [f(V), 8] (@) € (f«Ox)e- It is then clear that (f.)z([f(V), s]f)) = [V, 8]z 50 (f«)z is an isomorphism
as desired. Since f, = (fi)z 0 fﬁ(x), we have that f, must be an isomorphism for all z € X.

Now suppose that f is a homeomorphism, and f; : (Oy)f(z) — (Ox ). is an isomorphism for all z € X.
It suffices to check that fg is an isomorphism for all y € Y. Let y € Y, then since f is a homeomorphism,
there is a unique element z € X such that z = f~!(y). We have that fr-1(y) is an isomorphism, and
is equal to (fi)f-1(y) © f?B, however by the proceeding paragraph, (fi)s-1(y) is an isomorphism, so we
see that fﬁ = (f*);,ll(y) o ff-1(y), hence fﬁ is an isomorphism for al y € Y. It follows that f* is an

isomorphism of sheaves so (f, f*) is an isomorphism of locally ringed spaces. O

With the lemma above, we now have the following result, which is important for sanity reasons.
Corollary 2.1.1. Let f : X — Y be a homeomorphism, % a sheaf on'Y, and & a sheaf on X. Then
a morphism F : F — f.9 is an isomorphism if and only if the unique map F : f~'F — 4 is an
isomorphism. In other words, the isomorphism in Theorem 1.5.1 preserves isomorphisms.

Proof. Suppose that F': .# — f.¥ is an isomorphism, then we have that the stalk map F, : %, — (f.9),
is an isomorphism for all y € Y. It suffices to check that the stalk map F, : (f~1.%), — %, is an
isomorphism. By Corollary 1.3.3 we have that:

Fyoshyo(fy)e = (fe)o © Fra (2.1.2)

and by the preceding we have that (f.), is an isomorphism, and by hypothesis Fj,) is an isomorphism
for all f(x). Tt follows that £, must be an isomorphism for all z € X, as both sh, and (f; ')z are

isomorphisms for all x € X, hence F' is an isomorphism.
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Conversely, suppose that Fis an isomorphism, then F, is an isomorphism for all € X. Then (2.1)
implies that Fi(,) is an isomorphism for all f(z), as (f«), is an isomorphism and the composition on the
left is a composition of isomorphisms. Since f is a homeomorphism and thus surjective, it follows that
F, is an isomorphism for all ¥y € Y, hence F' is an isomorphism of sheaves as desired. O

As of this moment, we have two example of schemes, namely given a commutative ring A, we can
construct an affine scheme, and given a scheme X we can take any open subset of X and obtain an open
subscheme. We would like to be able to construct more examples, hence the following gluing proposition:

Theorem 2.1.1. Let {X;} be a family of schemes, and suppose for each i # j there exists an open
subscheme U;; C X;. Suppose also that for each i # j an isomorphism of schemes ¢;; : Uyj — Uy,
satisfying ¢i_jl = ¢ij, 0ij(Uis NUix) = Ui NUjji, and ¢ik, = ¢ji 0 ¢ij on Uy NUsy for all i, 5 and k. Then,
there exists a scheme X, together with morphisms v; : X; — X such that each ¥; is an open embedding,
Vi(X;) cover X, 1;(Usj) = 1i(Xi) N5 (X;) and ¢; = j 0 ¢i5 on Usy.

Proof. We first begin by constructing the topological space X. As a set define X to be:

(1) -

where the equivalence relation ~ is given by x; € X; and x; € X; are equivalent if and and only if
z; € Uyj, ¢j € Uj;, and ¢;;(x;) = xj. We check that this is an equivalence relation. Note that we have
x; ~ i, as x; € Uy = X, and ¢y = Idx,. The relation is symmetric, as if x; ~ z;, then we have
¢ij(xi) = xj, so ¢ji(x;) = x;, hence x; ~ ;. Now suppose that z; ~ z; and z; ~ x, then z; € Uyj,
xj € Uj;, xj € Ujg, and xy, € Uy;. It follows that ¢;;(z;) = =; € Uj;NUji, so x; € U;jNU;x, and moreover
that z3, € Up; NUk;. We also see that ¢, 00;;(z;) = ¢jk(xj) = zk, so we have that ¢, (x;) = zx, implying
that z; ~ z; as desired.

Note that since ¢;; = Id, no two elements x;,y; € X; such that x; # y; can be equivalent to one
another. We thus have natural injections v; : X; — X given by z; — [2;] € X, and thus v; is a bijection
onto it’s image. We define a topology on X by U C X is open if and only 1/)1»_1(U) C X; is open for all
i. We check that this is a topology; note that the empty set is vacuously open, and that X is open as

v, 1(X ) = X;. Moreover, arbitrary unions of open sets are open as:

v (o | =Ue o)
J J

which is the union of open sets in X; by hypothesis, and so the original set is open in X. For finite
intersections we have that:

YU NV) = (U) Ny (V)

which is open in X;, so U NV is open in X, so this assignment defines a topology on X.

Clearly, by the construction of the topology on X, we have that each ¢; : X; — X is a continuous
map. We want to show that i;(X;) cover X, and that each 1; satisfies ¥;(U;;) = ¢¥(X;) N¢;(X;) and
that 1); = 1; o ¢;;. The first statement is clear, indeed let x € X, then by the definition of X, x is
an equivalence class with a class representative z; € X;, so ¥;(x;) = [z;] = . Now let U;; C X;,
and suppose that « € 9;(U;;), then z is an equivalence class with class representative z; € X;. Since
x; € Uyj, and ¢ : Us; — Uj; is a homeomorphism, there must be a unique element x; € Uj; such that
¢ij(z;) = x;, hence [x;] = = = [z;]. It follows that = € ¢;(X;) as well, so ¥;(U;;) C ¥;(X;) Ny, (X;).
Now suppose that x € ¥;(X;) NY;(X;), then z = [z;] = [z;] for some z; € X; and z; € X;. It follows
that z; ~ z;, so x; € U;; and z; € Uj; such that ¢;;(x;) = x;, hence [z;] € ;(U;;), and we have that
’l/)l(U”) = 'l/Jl(XZ)m’(/JJ (Xj) as desired. Finally, let x; € UZ‘]‘, then /(/)z(mz) = [{I?l]7 and ¢jo¢ij ((ﬁl) = [¢Zj (.’Ez)],
however ¢;;(z;) € Uj;, and we vacuously have that ¢;;(z;) = ¢i;(x;), hence ¥; = ¥, o ¢;;.

To show that v; : X; — 1;(X;) is a homeomorphism, we first note that 1; is an injective open map.
Indeed, let x;,y; € X;, such that [z;] = [y;], implying that x; ~ y;, but z; and y; both lie in X;, so we
must have that ¢;;(z;) = y; implying that x; = y;. Now let U C X; be an open set, we want to show
that v;(U) is open in X. Tt is clear that since v; is injective we have that ;! (v;(U)) = U. Let j # i,
then we want to show that wj_l(wi(U)) is open in X;. If U NU;; is empty then we see that there is no
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x; € X; such that ¢;(z;) € ¢¥;(U), hence w;l(qlzi(U)) = () and is thus open. Suppose that U N U;; is not
empty, then we claim that:

b5 (@i(U)) = ¢4 (U N Usj) (2.1.3)

which is an open subset of X; as U NU;; C Uy; is open in the subspace topology, and ¢;; is a homeo-
morphism of open subspaces, so ¢;;(U NU;;) C Uj; is open in the subspace topology, and thus open in
X;. Let z; € wj_l(wi(U)), then we have that 9;(z;) = [z;] € ¥;(U), hence there exists an z; € U such
that [x;] = [z;] implying that z; € U;;, x; € Uj; and ¢;;(x;) = x;. It follows that x; € U NU,;, and that
z; = ¢ij(x;) so xj € ¢;;(UNUj;). Now suppose that x; € ¢;;(U NU;;) C Uj;, then there exists a unique
x; € UNUj; such that ¢;5(x;) = x;. We see that ¢;(x;) = [z,], and that [z;] = [2;] as x; € Uy, x; € Uy;
and ¢;;(x;) = x;. Since z; € UNU;; C U, we have that ¢;(x;) = ¢;(z;) € ¥;(U), hence z; € wj_l(wi(U)),
so (2.1.2) holds. It follows that ;(U) is thus open in X, and thus v; is an open injective map, and is a
bijection onto it’s image, and thus a homeomorphism.

Now, denote ¥;(X;) by Z;, we want to put the structure of a scheme on Z;. Note that each X; is a
scheme, hence comes equipped with a sheaf of local rings O, ; we define the sheaf 04, by:

Since the 1; : X; — 2 is a homeomorphism, note that (vi«)s : (02;)y, (@) — (O2;). is an isomorphism
for x; € X;. It follows that the stalk of 02, is a local ring, so Og; is a locally ringed space. We now check
that (2, Oa;,) is a scheme, let z € Z;, then there exists an open neighborhood U of ;! (z;) € X; such
that (U, Ox,|v) = (Spec A, Ospec 4) for some ring A. Tt thus suffices to check that (v;(U), O]y, w)) is
isomorphism to (U, Ox,). We first note, that since 1; is a homeomorphism, that 1/);1 :i(U) - Uisa
homeomorphism. So we need only define a morphism (¢; ') : Ox, v — (V7 ")(O2;|p;@))- Let V. C U
be an open set, then:

Ox,lu(V) = Ox,(V)
while:
(YO,
since ¥;(V) C 1;(U) we have that:

(Wi (O,

w:))(V) = (O;

wi) (@i(V))

) (V) =(O2,)(0:i(V))
=i Ox, ) (Wi (V)
=0x, (¥, (W:(V)))
=0x,(V)

We thus define (1), 1)7‘1/ to be the identity map; it is clear that this commutes with restrictions, hence

this assignment defines a natural transformation, and since (1, 1)%, is the identity for all V' C U we have
that (1, ')* is an isomorphism as desired. It follows that (2}, O;,) is a scheme as desired.

Now we have that {27} is an open cover of of X, and moreover that ; : X; — 2 is an isomorphism
of schemes for each ¢, by applying the the same argument above to U = X;. If we can show that there
exist isomorphisms B;; : Og;|2:n2; — Oa;|2:n2;,, which satisfy the cocycle condition then we will
obtain a sheaf on X such that Ox|g, = 04, by Theorem 1.2.2. Note that we have:

ZiN 25 = i(Xi) N (X;) = ¥i(Uis) = ¢ (Ujs)

Furthermore, since (X;, Ox,) = (23, Og;) via (¢; ', (1; 1)#), we have an inverse map given by (¥, wg),
where ¢! © 04, — 1. Ox,, so we have map (f)y : O, (V) = Ox, (¥7H(V)). Now note that since
V C wi(UiJ‘), w;l(V) C Uij, SO:

Ox. (W71 (V)) = Ou, (07 (V))
and we have an isomorphism qbg-i : Oy,; — ¢5ixOy,,. We have that:

5 (07 (V) = (i 0 ¢5i) (V) = 471 (V)
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so we have an isomorphism:

(F) g1y : Oy (671 (V) — Ou, (7 (V) = Ox, (45

Finally we have our isomorphism (¢J ) Ox, — (V5 1)+ 04, and note that:

thus we have that the composition:
(1/)]‘_1)2);1(‘/) o (¢ji)§l);1(v) o (djf)V
is an isomorphism:

O \aina; (V) = Ol ana;,(V)

74

We define §;; on open sets V. C Z; N Z; as this composition. We check that this commutes with

restriction maps, let W C V, then we see that:
(Whw o 01y =03 o (W)w

gw()

Ly SO We see that:

On 9, Ox;, the restriction maps are given by 60};, =

# ¥,
((bji),/,;l(w) o Oy = 9 (W) (¢ )
Now on ¢;;. Oy, the restriction maps are given by:

L% 9 P V)

by
9 _I(W) 7_1(W)
as ¥; o ¢j; = 1; on Uj;, hence:
1y W (V) 14 v H(V)
; )%‘1( w) ® Oy (% ) wrow) @y
_o%i V) —1y4
Finally, on (¢, ho 2;, the restriction maps are given by:

(V)

so since W C V C Z; N Z;, we have that:
(Bij)w o Oy = O3 o (Bij)v

SO ﬁij :

i = 1d, so

we want to check that 8;;, = B, 0 Bij on Z; N Z; N Z). However this is essentially a tautology, as on all

openset V.C Z;NZ; N Zy:

(Bjk 0 Bighv =(wi Vi1 <¢§;j>¢j—1v o (W)v o (U7} © (930},

=)o) © Gyt © (@3} © (WY
(7/% ) G (V) (¢k,) Tl © (U’u)v
=Bik

Note that this chain of equality hinges on two statements. First the fact that:

(¥h)y o (w;1>i;1(v) —1d
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However this is trivial, as:

is the identity map, and:
Wy : O, (V) — Ox, (%51 (V))

is also the identity. The more challenging statement is the following:
((bk'])fb;l(V) o (¢]1)ijl(v) = (¢ﬁkz)¢7l(v)
This follows from the fact that ¢r; = ¢;; o @, so:
¢ﬁki = ¢ji*¢ﬂkj © (1521‘
so we have that:
(S (v) =(@jindly) 1 vy © (85 0
kiJp; 1 (v) T\ PjixPrj )yt (v) © (Phidy 1 (v)
_ #
—(¢?«j)¢;(w;l(\/>) ° (@fi)yr1(v)
:(‘1521')1&;1(‘/) © (‘f’?‘i)w;lw)

implying the claim. It follows that the (27, O2;) glue together to form a sheaf X, &'x such that Ox| g, =
O «;, implying that each v; : X; — X is an open embedding. It is also clear that as morphisms of locally
ringed space ; = 1; o ¢;;, essentially by the construction of our maps 1/)?.

All that remains to show is that (X, Ox) is a scheme. Let x € X, then z € Z; for some 4. There is
then an isomorphism (27, Ox,|2;) to (Z:, Og;), the latter of which is a scheme as it is isomorphic to
(X, Ox,). Examine the image of x € X; under this composition of isomorphisms, and denote it by z;.
Since X; is a scheme, it follows that there is an open neighborhood V., of X, such that (V,, Ox,|v,) is
isomorphic to an affine scheme. Take the preimage of V,, under this composition of isomorphism, and
we obtain an open neighborhood of  whose image under the composition of isomorphisms is isomorphic
to an affine scheme. It follows that x has an open neighborhood W, such that (W, &x|w) is isomorphic
to an affine scheme implying the claim. O

We have the obvious corollary:

Corollary 2.1.2. Let {X;} be a family of schemes satisfying the criteria of Theorem 2.1.1, then the
scheme X is unique up to unique isomorphism.

Proof. This follows from Theorem 1.2.2, and the uniqueness of gluing topological spaces together, i.e.
uniqueness of the quotient topology and the natural topology on the disjoint union of topological spaces.
O

We now show some easy examples of non affine schemes:

Example 2.1.2. Let AZ = SpecC[z,y], and note that for any (21,22) € C, the ideal (z — 21,y — 22)
is prime. It suffices to check that C[z,y]/{x — 21,y — 22) is an integral domain; in fact, we claim that
C[iﬁ,y]/ <‘T —ZLY - 22> =C.

We define a map ¢ : C[z,y] — C by p — p(z1, 22). This clearly a surjective morphism as the constant
polynomial p(z) = w maps to w € C. We thus see that C = C[z, y|/ ker ¢. Clearly (x — 21,y — 2z2) C ker ¢,
suppose p € ker ¢, and write:

p= Z aija:iyj
j
Note that 2™ = (z — 21 + 2z1)", and y™ = (y — 22 + 22)", hence there exists a P such that:

p(l",y) :P(I*Zhy*Zz)
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so p(z1,22) = P(0,0) = 0, hence P as 0 constant term. Every term is then divisible by = or y, and we
thus have that there exist polynomials ) and R such that:

P(z,y) = 2Q(z,y) + yR(z,y)

SO:

p(r,y) = (x = 21)Q(x — 21,y — 22) + (y — 22) R(x — 21,9 — 22)

and so p(z,y) € (x — 21,y — z1) implying that C = Clz,y]/ (x — 21,y — 22).

We define a map ¢ : C[z,y] — C by p — p(0,0), i.e. we evaluate the polynomial p in two variables
at the point (0,0. Note that this is clearly a ring homomorphism, and that if p € (x,y), that p(0,0) = 0,
so {(x,y) C kerty. We also see that if p € kert), then the leading coefficient of p must be 0. It follows
that:

p :Zwija:iyj
ij
where if 4 = j, then j # 0, so:

i1, i
p=x E wijx' Yy + E wijz'y’
i>0,j i=0,j

:xz Z wiz' ™y +y Z wiz'y’ € (x,y)

i>0,5 i=0,j

so ker ) = (z,y). Moreover, this map is clearly surjective, as if z € C, the constant polynomial z € C[z, y]
maps to z as well. We thus get a unique isomorphism ¢’ : Clz,y]/ (z,y) — C by the universal property
of quotient rings. It follows that Clz,y]/ (x — 21,y — 22) = C, so every ideal of the form (z — 21,z — 29)
is maximal'”?, and thus prime.

It follows that we can identify AZ with C? along with some extra points (such as the zero ideal (0)).
We thus denote the ideal (x — 21,2 — 22) by (21, 22), and claim that A2 \ (0,0) is an open subscheme of
AZ which is not affine. First note that:

A%~ (0,0)=U,UU,

Indeed, if p € U, UU,, then we have = ¢ p or y ¢ p, hence p # (0,0) implying that p € AZ \ (0,0). Now
suppose that p € AZ \ (0,0), then p # (0,0), in particular, since (0,0) is a maximal ideal we have that
(0,0) ¢ p. Now suppose that = € p and y € p, then we clearly have that (0,0) C p, so either = ¢ p, or
y ¢ p, implying that p € U, U U,,.

We know that there is a unique scheme structure on A \ (0,0), and we can further deduce that this
must be the one obtained by gluing the sheaf 0y, to Oy, . Since there are only two sets which cover the
space, we need only check that Oy, |v,nv, = Ov,|v,nu,. Let V C U, N Uy, then we have that V C U,
and V' C Uy, hence:

Y

Ov,lv,nv, (V) =0y, (V) = 0x(V)

and similarly for O, , hence we get a sheaf of rings on AZ \ (0,0), and since every element 2 € A%\ (0,0)
lies in either U, or Uy, and U, and U, are both affine schemes, it follows that with this structure sheaf,
AZ ~ (0,0) is the scheme isomorphic to the open subscheme U, U U,. We want to show that AZ \ (0,0)
is not affine; denote by X the open subscheme A{ \ (0,0), we want to calculate Ox(X). Note that by
our work in Theorem 1.2.2 we have that:

Ox(X) ={(52,8y) € Ov,(Us) x Ou,(Uy) : sz|lv,nv, = sylu.nv, }

as the morphism 0y, |UmUy — Oy, ‘UmﬂUy is the identity morphism. Now note that since U, and U, are
distinguished open sets, we have that:

Ou,(Uz) = (Cl2,y))e = Cla,y, 1/z]  Ou, (Uy) = (Clz,yl)y = Clz,y,1/y]

91n particular, it is a standard fact that any maximal ideal of a polynomial ring over k = k is of this form.
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while we have that:
Ov,|v.nu, = Ov,lv.nu, = Clz,y,1/z,1/y]

By our earlier work on affine schemes, we know that the restriction maps (up to isomorphism) here are
just the obvious inclusions. It follows that if s$|meUy = 5y|UzﬂUy7 then s, and s, are in the image of the
injections C[z,y] — C[z,y,1/z], and Clz,y] — C[xz,y, 1/y], as the must be polynomials with no 1/x or
1/y terms. It also follows that the preimages of s, and s, under these injections must be equal as well,
hence:

Ox(X) = {(p,q) € Clz,y] x Clz,y] : p= g} = C[z,y]

Now suppose that X is affine, then we have that there is an isomorphism (X, 0x) = (Spec A, 04) for
some commutative ring A. We thus have that &'x (X) = A, but we have just shown that Ox (X) = Clz,y],
implying that X = Spec C[z, y] as topological spaces. Now in an affine scheme there is a bijection between
the points of A2 and the prime ideals of C[z,y], however AZ \ (0,0) is missing the prime ideal (0,0), so
it cannot be affine.

Example 2.1.3. Let {X;} be a family of affine schemes, and then we claim that:
x=][x
i

equipped with the natural disjoint union topology is a scheme which is affine if and only if the the family
is finite. We can prove one direction immediately, suppose that X is an affine scheme, then we need
to show that the family is finite. We prove this by the contrapositive, i.e. if the family is infinite then
X is not affine, and we prove the contrapositive by contradiction. Assume that X is affine, then every
open cover of X has a finite subcover by Lemma 1.4.1, however this is clearly not true as the infinite
disjoint union of any family of topological spaces cannot be quasi-compact?’. It follows that if the family
is infinite then X is not affine, hence if X is affine then the family is finite.

Now suppose that the family is finite, by induction, and the associativity of the disjoint operation on
topological spaces, it suffices to check that check that:

Spec Ay H Spec As
is affine for any two rings A and B. Indeed, we claim that:
Spec A H Spec As = Spec(4; x As)

In particular, we claim that Spec A; [ [ Spec A, is the coproduct in the category of affine schemes. Set
X = Spec A1 | [ Spec Ay, then we want to first show that X is a scheme. Let U C X be open, then we
have that ;' (U) C Spec A; and 5 *(U) C Spec Ay are both open, where 9; and 1), are the canonical
injections. We define:

Ox(U) = Ospec a, (V7' (U)) X Ospec a,(¥3 ' (U))

-1 —1
and restriction maps to be 6Y = (Hzl,lgg, Gzilgg;) We check that this is a sheaf, let s € Ox (U), and U;
1 2

an open cover of U such that s|y, = 0 for all U;, we want to show that s = 0. First note that we can
write s = (81, 52) € Ospec a4, (V1 (U)) X Ospec 5(¥05 1(U)), and that

v () =Jvr' ()
and similarly for A,. It follows that

S

Us = (81|w:1(m>’52|w;1<m>)

implying that s;| AR 0 for all U;, hence s; = 0, and similarly for A, implying sheaf axiom one. The
T
same argument adapted to sheaf axiom two implies that this indeed a sheaf.

20 A topological space is quasi-compact if every open cover has a finite subcover. Note that this is often taken as the
definition of compactness, but for some reason algebraic geometer’s prefer this nomenclature.
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Now note that as a set:

X = U{(p,i) p €A}

so we define a map:
n: X — Spec(A x B)
by:

pxAy ifi=1

n((p,m:{Alxp iy

We note that if p C Ay is prime, then p x Ay is prime. Indeed, let (a,b) and (c,d) lie in A; x As such
that (ac,ed) € p x As, then it follows that ac € p, hence a € p or ¢ € p, implying that (a,bd) or (¢,d) in
p X A 80 p X Ay is prime. It follows that this map is well defined. It is clearly injective, as we can’t have
px Ay = Ay xq,s0if px As = q X Ag, then this implies that p = q hence (p,1) = (q,1). To check that
this map is surjective, first note that p x q is not prime for any ideals (not necessarily prime) p C A;
and q C As in A; X As, where p and q are not the whole ring. Indeed, if a € p, b € Ay, c € A1, d € q,
then (a,b), (¢,d) ¢ p x q, but (ac, cd) € p x q. Now let ¢ C A1 x Ay be a prime ideal, then it follows that
q1 = m2(q) is an ideal and gy = mo(p) are ideals of A and B respectively as the surjective image of an
ideal is an ideal. We claim that:

qg=4q1 X q2

It is clear that q C g1 X g2, so now let (a,b) € q1 X q2. This implies that (a,s2) € q and a (s1,b) € q for
some s; € A;. Note that since q is an ideal, we thus have that (a, s1)-(1,0) = (a,0) € g, and similarly for
(0,b). Since q is closed under addition it follows that (a,b) € q. Since q is prime however, we must have
that q; = A; for i = 1 or 2. Without loss of generality suppose that qo = A, then q; must be prime,
as if @ - ¢ € q1, then we must have that (a,b) - (¢,d) € g = q1 X As, hence either (a,b) € q or (¢,d) € q,
implying that either a € q; or ¢ € q1. Now let ¢ C A X B be prime, then q = q; X Az or q = A1 X q2
where q; is prime, so it follows that (q;,%) € X, and satisfies n((q;,%)) = ¢, so 1 is surjective.

We check that the map is continuos, by noting that 7 is continuous if and only if o1); is continuous for
each 4. It suffices to check this on distinguished open sets. Let U, ;) C Spec A1 x A3 be a distinguished
open, then:

17 Uay) ={(p,1) € X :n((p,7)) € Utay }
={(p, ) : (a,;0) € n((p, 1))}
Then for ¢ = 1:
VT Uga)) ={p € Spec A1 : ¢1(p) € ' (Uap)}
:{p € Spec 4 : (pv 1) € n_l(U(a,b))}
={p € Spec A : p x Ay € Ugap)}
={p € Spec 41 : (a,b) & p x Ay}

={p € Spec 4, : a ¢ p}
:UCL

similarly:

V3 (7 (Ulay)) =Uy

so 1 is continuous. We want to show that n is an open map. Let U C X be open, then:
U =41 (¢ (U)) Unha (¥ (U))

We can write 1, L(U) as union of distinguished opens, hence:

U =Jv1(Ua,) U 2(0s)
7 k
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Taking the image of this under n we find that:

n(U) = Jn(rUa))) U n(wa(Us,))

k
so it suffices to check that 1 o; is an open map. Let U, C Spec Ay, then:
P1(Ua) ={(p;1) € X :a ¢ p}
SO:
n(W1(Ua)) = {p x A1 :a ¢ p}
We claim that:
N(¥1(Ua)) = Uga,0) = {a € Spec(41 x Az) : (a,0) ¢ q}

Let q in U(q,0), then q # Ay X p for some p C Az asa € Ay and 0 € p C Az. It follows that ¢ = p x Ay for
some p C Ay, and that a ¢ p, hence ¢ € n(11(U,)). Now suppose that p x Ay € n(¢1(U,)), then a ¢ p,
hence (a,0) ¢ p x Ay, s0 p x Ay € Ugq0). A similar proof follows for 3, hence n(U) is the union of open
sets and is thus open. It follows that 7 is a homeomorphism as it is an open continuous bijection.

We now want to define sheaf isomorphism:

nu : ﬁSpcc(AXB) — n*ﬁX

It suffices to define the sheaf morphism on basic open sets of Spec(A x B). Let U, be a basic open,
and let V =1~ (Uqy)) C X, then note that:

V=i (V) Utha (93 (V))
hence:

(W*ﬁX)(U(a,b)) =0S8pec A1(¢f1(v)) X OSpec Ay (7/)2_1(‘/))
:ﬁSpeCAl (Ua) X ﬁSpeCAl (Ub)
=(A1)a x (A2)p

It thus suffices to show by Corollary 1.4.2 that:
(A1 X A2)(ap) = (A1)a x (A2)p

and that the isomorphisms commute with restrictions on a base. We define a map Ay x As — (A1), X (A42)p

by:
(5,) — Gi)

and note that the image (a,b) is a unit with inverse given by (1/a,1/b) so we obtain a unique map:

¢ (A1 X A2)ap) — (A1)a X (A2)p
(s,t) s t
(@ 0F ( bk)

It is clear that this map is surjective. If ¢((s,t)/(a,b)¥) = 0, then we have that:

pri 0 and i 0
implying that there exists some m and some n such that:

ams=0 and b"t=0
Let K > max{m,n} then:

a¥s=0 and bt =0
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(a,b)X(s,t) = (a®s,%t) = (0,0)

implying that (s,t)/(a,b)* = 0 as well, so ¢ is injective and an isomorphism. It is clear (albeit a little messy
to check explicitly) that the isomorphisms commute with restrictions on a base, hence X = Spec(A; x Asg)
and is thus an affine scheme.

To see that X is a coproduct, it suffices to check that Spec(A; x As) satisfies the properties of
the coproduct. Note that we have natural morphisms Spec A; — Spec(A; X A3) given by the map
77;1 : Spec A; — Spec(A4; x Ag), and the induced map wf : OSpec(A; x A;) — Spec(4;). Since there is an
isomorphism:

Hom(A, B) = Hom(Spec B, Spec A)

and A; x Ao satisfies the universal property of the product in the category of rings, it follows that
Spec(A; X As) must satisfy the universal property of the coproduct, hence so must X. In particular, the
isomorphism X 2 Spec(A4; x Ay) is unique.

As the preceding example states, the infinite disjoint unions of schemes (affine or not) is not affine.
We will show later in this section that the disjoint union of schemes is the coproduct in the category of
schemes. Funnily enough however, the product of schemes is not in general a scheme, so schemes are a
category without products.

Example 2.1.4. Let X = Aé, i.e. the affine scheme SpecClz]. Let Y be another copy of of Al but
instead use the variable y for book keeping purposes (i.e. Y = SpecC[y]). Now examine U, C X and
U, C Y, both of these are affine schemes isomorphic to Spec C[xz,1/x] and SpecCly, 1/y] respectively.
Note that C is algebraically closed, so the only prime ideals of C[z] are of the form x — z for some
z € C, and of course the zero ideal (0). It follows that U, and U, contain every ideal but the ideal (z).
Furthermore, with this identification we can truly vies A{ as C with an extra point (0) which is ‘close’
to every other point. Obviously the usual topology on C differs from the one on A{; in particular A} is
clearly non Hausdorff.

We wish to glue these two schemes together along U, and U,. Since U, and U, are affine schemes, it
suffices to give a ring isomorphism Clz,1/z] — Cly, 1/y]. We give the obvious one induced by the map
C[z] — Cly] given by x — y. Clearly this isomorphism descends to an isomorphism C[z, 1/x] — Cly, 1/y]
which takes z — y and 1/2 — 1/y. Since there are only two schemes to glue, there is only one subset of X
and Y respectively to glue, and only one isomorphism ¢, : U, — U, so the conditions of Theorem 2.1.1
are trivially satisfied. Denote the induced scheme by Z, and note that the topological space:

Z = (X I1 Y) / ~
looks like A{ with two origins (x) and (y). Indeed, the embeddings ¢, : X — Z and ¢, : Y — Z satisfies:
Yo ({2 = 2)) = ¥y ({y — 2))

for all z # 0, and also agree on the zero ideal. We wish to show that this scheme is not affine, and we do
so by calculating the ring of global sections. Now note that:

=2 U
and so:
O7(Z) ={(82:,8y) € O (X)X O (¥ ) : Su|l v = Bya(sylanw)}
We have that 2" = # = Spec C[z], and that:
X NY =,(X) Nipy(Y) = 1, (Uy) = SpecClz, 1/z]
so under these identifications 8y, is equivalent to the map induced by x — z, hence:

07(Z) = {(p,q) € Clz] x Clz] : m:(p) = ()}
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where 7, : Clz] — C[z,1/z] is the localization map. It follows that since the localization map of an
integral domain is an injection that:

so if Z is affine then Z = Spec C|z], but Z contains two copies of the zero ideal, hence cannot be affine
by the same argument as in Example 2.1.3

This demonstrates an analogue of a failure of a scheme to be Hausdorff, in the sense that the C glued
to itself everywhere except the origin is non Hausdorff. We will make this notion precise when we discuss
separatedness. In our next example, we again glue two copies of an affine scheme together, just via a
different isomorphism.

Example 2.1.5. Let X Y, U, C X and U, C Y be as previously defined in Example 2.1.4. Consider
the map:

Clz] — Cly, 1/
induced by the assignment:
x—1/y
We note that 1/y is a unit in C[y, 1/y], hence this descend to a unique morphism:
¢ : Clz,1/z] — Cly,1/y]

We check that this is an isomorphism, p € C[z,1/z] be a polynomial such that ¢(p) = 0. We see that p
can be written uniquely as:

m .
=3
i=—n
for some n,m € ZT, and some z; € C. It follows that:
n
o(p) = Z zy"
i=—m

and for this to be the zero polynomial, we must clearly have that z; = 0 for all 4, hence p = 0, so
¢ is injective. Clearly ¢ is surjective, as we can just invert any polynomial in Cly,1/y] term by term
and replace the variable y with x. It follows that ¢ is an isomorphism, with inverse induced by the
assignment y +— 1/, so we obtain an isomorphism of schemes U, + U, which trivially satisfy the criteria
of Theorem 2.1.1.

As before, we first describe the topological space:

Z:(X]_[Y)/~

and then calculate the ring of global sections. First note that the prime ideals (x — z) gets mapped to
the prime ideal:

n(<x72>):{%€((:[m,1/x]:p€<x72>,k20}

so this is the ideal ((z —z)/1) C C[z,1/z]. Under the isomorphism ¢ : Cly,1/y] — C[z,1/z]*" we see
that ¢ induces a homeomorphism f given by:

f((x —2)) = (1/y — 2) € SpecCly, 1/y]

We claim that (1/y —z) = (y — 1/z) in Cly, 1/y]. Let p € (1/y — z), then:

p=q-(1/y—2)

21 Abuse of notation alert! This is the technically the inverse of ¢, but for notational reasons we redefined ¢ as it’s inverse.
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for some g € Cly, 1/y]. Now note that element (—y - 1/2)/1 is invertible in Cly, 1/y] hence we have that:
p=¢-((~y-1/2)/1) - ((~y-1/2)/1)7" - (1/y - 2)
=q-((~y - 1/2)/)7" - (y = 1/z)

so p € (y—1/z). The same argument in reverse demonstrates the other inclusion hence (1/y — z) =
(y — 1/%). It follows that the ideal (z — z) is identified with ideal (y — 1/z) for all z # 0, and that (0) is
identified with (0). As a set, we can make more this feel more familiar, identify X and Y with CU {(0)}
and define the map:

F: X[y — P U{(0)}
where P! = C2 ~ {(0,0)}/CX, by:

{0}if ze X orz €Y and z = {0}
F(z)=14[z1]ifze X
[1,z]ifz€eY

We see that 2 #0 € X and 1/z € Y then:
F(z) = [2,1] = [1L,1/] = F(1/2)
and similarly for 1/z € X and z € Y, hence there is a unique set map:
F':Z — P u{(0)}

This is surjective, as if [w, z] € P!, both of which are non zero, then [w, z] = [1, z/w] so [z/w] € Z maps to

[1,z/w]. If either w or z is zero then [w, z] = [0, 1] or [1, 0] respectively, and the elements [0,] and [0,]”
map to [0,1] and [1,0] respectively. Moreover, the ideal (0) gets mapped to (0). The same argument in
reverse essentially proves that F” is injection, and is thus a set isomorphism. For this reason, we see that
Z is an algebraic geometry analogue of projective space, and thus we denote Z by P¢.

To see that IP’(}: is not affine, we calculate the ring of global sections. We see that:
Op1 (Pe) = {(52,8y) € O (Z) X O(¥) : 52| 200 = Bya(sy| 200)}
As before, we have that 09 (2) = O (%) = Clz], and that:
ZNY =1, (X)N Yy (Y) = ¢, (U,) = Spec Clz, 1/x]
so under these identifications, 8, is equivalent to the map given by x — 1/z. It follows that:
Op1(Pr) = {(p,q) € Clz] x Cly] : (p) = Bya((q))}

Let p =Y, ziz%, and ¢ = Y, w;z’, then we see that if 7(p) = By, (7(¢q)) we must have that:
hence z; = w; = 0 for ¢ > 0, and zg = wg. It follows that:
Op1 (PL) = C

so if P{ was affine we would have that P{. = Spec k = (0), which obviously cannot be the case.

This is our first example of what we will call a projective scheme. The entirety of the next section
will be dedicated to the construction of the map (not a functor!)Proj : Ring — Scheme. In particular, we
will have that P} = Proj(k[xo, z1,...,%x])-

We continue with an extension of Example 2.1.3.

Proposition 2.1.1. Let X and Y be schemes, then the topological space X [[Y has the natural structure
of a scheme, and is the coproduct in the category of schemes.

22We use this notation to denote the image of 0 € X and 0 € Y under the open embeddings v, and 1y respectively.
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Proof. Note that § € X and ) C Y, and since () is an open subset of X and Y, it follows that @) is an
open subscheme of X and Y, and there is an obvious isomorphism between the two. Since there are only
two schemes to glue, it follows that this satisfies the criteria of Theorem 2.1.1, hence:

— (Xﬂy>/N

has the natural structure of a scheme. However, this equivalence relation is the trivial one, hence:

z=X][Jv
It follows that X J[Y has the natural structure of a scheme, and we have have that the canonical injections

Px : X — Z and ¢y : Y — Z are scheme isomorphisms onto their images.

Let U C Z be open, then we have that since the gluing is trivial:
Oz(U)=0x(UNZ)x Oy (UN¥)
=0 (UNiYx(X)) X O (U Ny (Y))
=0x (5 (U)NX) x Oy (v (U)NY)
=0x (X' (U)) x Oy (451 (U))

which is exactly the structure sheaf we put on Spec A; [ [ Spec As. Note that the Z already satisfies the
universal property of the coproduct in the category of topological, spaces, i.e. for any topological space
W and morphisms ¢x : X — W and ¢y : Y — W there exists a unique morphism ¢ : Z — W such that

the following diagram commutes:
X
\ /
Yx Yy
\ /
Z
dx

|

w

Y

We thus need to show that the sheaf morphisms commute ‘in the opposite direction’. Suppose that W is
actually a scheme, and the ¢x and ¢y are morphisms of schemes, then note that we have:

Pt Oz — ox.Ox  and ¢k Ow — ¢x. 0%

and similarly for the Y morphisms. We thus need to construct a unique morphism ¢! : Oy — ¢.0
such that the following diagram commutes:

/N

¢*6)Z

N

¢¢X ¢¢y

S AN

Ox+Ox by Oy

First, as a sanity check, lets make sure this diagram makes sense. Note that:

G 3,07 — G (Px.Ox)
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however, we have that ¢ o ¢x = ¢x, so:

¢« (Vx:Ox) = (P oPx)sOx = dpx:0x
so the diagram does indeed make sense. Now let U be an open subset of W, we define a map:
0y : Ow(U) — 6.02(U)
by first noting that:

¢« O0z(U) ﬁz(¢ (%))

Ox(x (97 H(U))) x Oy (3 (971 (V)))
=0x((povx) 1 (U)) x Oy ((¢ovy) 1 (U))
=0x(px' (U)) x Oy (63 (U))
=0x:O0x(U) x ¢y Oy (U)

so the only reasonable definition of U is:

64 () = (6 (s). (64 )0 ()

We check that this commutes with restriction maps. Let V' C U, and s € Oy (U) then:

6 0 0%(5) = (6% ). (65 )v ) 0 0/ (5)
= ((@5)v 0 0 (s), (&} )v 0 07(5))

since qbg( and ¢§/ are natural transformations, we have that:

61 0 01/ (s) = (07 o (630 (),67 o (6} )ur(s))

9¢;£(U)

h. hat:
6 (V) so we have that

However, note that restriction maps on ¢ x.Ox are given by 95 =

i U_ [ p¢x (@) oy (U) #
(bVoHV—(@ (V)X9¢Y (V)>O¢U
Now note that the restriction maps on ¢, are given by:
0 =05, (1)

RO N Ul o)
<9w;1<¢ (V) Xaw—l(as—l(vn)

¢ (U) 3 (U)
<9¢X Lv) 9 (V))

hence:
o 0 0 = 0 0 o},

SO 1t follows that ®* . Ow — ¢.0y is indeed a natural transformation. We now need to check that
Dy 1/1X o ¢t = QSX, and it suffices to check that they agree on all open sets of W. Recall that 1/)X is
defined to be the identity on open sets when U C Z is entirely contained in ¢ x (X); since 0z(U) =
Ox (WM (U)) x Oy (1by ' (U)), it follows that (z/)g()U is the projection:

Ox (' (U)) x Oy (V5! (U)) — Ox (%' (U))
Now let U C W be open, then:
((b*’(/)g( © ¢u)U (¢*1/)§(>U o ¢¥]

~(W5)s 1wy © ((65)v x (¢} )0)
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Now note that (gi)g()U has image in Ox (o5 (U)) = Ox((¢ o x)~1(U)), and that ("(/}g()d,—l([]) is the
projection:

Ox((¢ox)" (V) x Oy ((¢ovx) ' (U)) — Ox((¢ox)' (V)

hence:
(9 0 ) = (H)u

for all U. It follows that ¢*¢§< o ¢f = qan, and similarly for Y, hence we have that Z = X [[Y satisfies
the universal property of the coproduct in the category of schemes as desired. O

Before moving on to discuss closed subschemes, we prove the following cute result, which is an analogue
of Corollary 1.4.3.
Proposition 2.1.2. Let X be a scheme andY = Spec A be an affine scheme. Then the set of morphisms
Hom(X,Y) is in natural bijection with the set of ring morphisms Hom(Oy (Y), Ox (X)) = Hom(A, Ox (X)).

Proof. Let (f, f*) be a morphism X — Y, then f}ﬁ, Oy (Y) = Ox(f~H(Y)) = Ox(X) is a ring morphism.
Define a set map:

¢ : Hom(X,Y) — Hom(Oy (Y), Ox (X))
by:
(£ ) = f

We want to define a map in the other direction, and show that these are inverses of another. Let
Y : Oy (Y) = Ox(X) be a ring homomorphism, we want to define a map:

(fo- f5): X —Y

We first determine the topological map fy, : X — Y’; note that every point in Y = Spec A can be identified
with prime ideal of Oy (Y) via the isomorphism Oy (Y) = A. It thus suffices to assign a prime ideal of
Oy (Y) to each x € X. Let z € X, then we have that the ring (0x), has a unique maximal (and thus
prime) ideal m,, and there is a unique stalk map map 7, : Ox(X) — (Ox),. It follows that 7, 1(m,) is a
prime ideal of Ox (X), and ¢~ (7 (m,)) is a prime ideal of Oy (Y). Let ¢4 be the natural isomorphism
A — Oy (Y), then we see that:

We check that this is continuous, and it suffices to check this on distinguished opens U, C Spec A. We
see that:

fHU) ={z e X : f(zx) €U}
={zreX:a¢ f(z)}
={zeX:a¢ wgl(wil(ﬂgl(mz)))}
={z € X :pa(a) ¢ v (r; (m,))}
={z € X : m(¢(pala))) ¢ my}

Let ¢¥(pa(a)) = g € Ox(X), then we have that:
le(Ua) ={re€X: g, ¢m;}
It thus suffices to show that for every g € Ox)(X) the set:

Xg={reX:g, ¢ m,}
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is an open set. Cover X with affine open sets U; = Spec B;, then we see that:
X, =Jx,nU;

It thus suffices to check that X, NU; is an open set for each i. Let §; : U; — Spec B; be an isomorphism
of affine schemes, then we have an isomorphism Ox (U;) & B;, which we denote by v; : Ox(U;) — B;.
We claim that:

Bi(Ui N Xg) = Uy,(gl,)

which would imply that U; N X, is an open subset of U;, and thus an open subset of X. First note that
since (9|u,)z = Ga:

UiﬂXg:{IIJEUi:(g

U)z & Mg}

The homeomorphism f; associates to each x a unique prime ideal p, C B;. Moreover, the unique maximal
ideal m,, is then isomorphic to (B;)y,, hence:

Bi(UiN Xy) = {ps € Spec B; : v(glu, )p. ¢ (Bi)p. }
Now v(glv,) € Bi, so (glv, )p, is given by:

Aolo . = 199 ¢ (B,

We wish to show that if b/1 ¢ (B;),, then b ¢ p,, however, this clear by the contrapositive, i.e. if b € p,
then b/1 € (B;),, as:

(B, = {L € (B, :p .}

hence if b € p, then clearly b/1 € (B;),,. It follows that:
Bi(Ui N Xg) ={ps € Spec B; : v(glv,) & pa}
=Us(lv,)

so X, N Uj is open for all ¢ implying that X, is open. It follows that fJI(Ua) is open, and thus fy is
continuous.

We now define the the map fji : Oy — [y«Ox, and by Theorem 1.4.1 it suffices to define fi on
distinguished open set U,. We thus need to define morphisms:

A, = ﬁy(Ua) — fw*ﬁ_x(Ua) = ﬁx(Xg)

where g = 1(pa(a)). First consider the restriction map 9§q 1 Ox(X) — Ox(X,), then we want to show
that image of g is a unit in Ox (X,). Recall that for a local ring any element not in m, is a unit, hence
9o € (Ox)q is a unit for all 2 € Xy. It follows that (¢z) € [[,cx,(€x)o is a unit, in particular there is a
sequence (h,) € Hzexg(ﬁX)w such that:

(hz) ’ (gz) = (11)
Now for each x € X, we write h, = [V, s7] for some V, C X, and some s* € Ox(V,), it follows that:
h:c cGr = [VzvsI] . [X7g] = [VI mX? 81|VzﬁX 'g|VzﬂX} = [Vzvsx . g|Vz] = 11’

There is an open subset of W, C V, such that (s® - g|y,)lw, = 1, implying that s%|w, = (glw,) "
Repeating this for all € X, gives us an open cover of X, by W,, along with sections s|yw, = t* €
Ox(W,). Now that since t* = (g|lw,) !, we have that for all y € W,
— 4,1
ty =9, =hy

hence (hy)/ € ﬁg((Xg). Since ﬁg{ & Ox it follows that there is unique element h € Ox(X,) such that
h = (g|x,)”", hence 0§g (g) is a unit in Ox(X,) so there exists a unique morphism:

Ox(X)g — Ox(Xy)

5/g* — s|x, - h*
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We now show that there is a map A, — Ox(X),, however this again follows from the universal property
of localization, as we have that ¥ (p4(a)) = g, so the image of a is a unit in Ox (X),. We thus have have
map:

Aa — ﬁx(X)g
bla® — (pa(b)/g"”

and hence a morphism:

Aa — ﬁx(Xg)
bfa* s (pa(®)x, - h*

This clearly commutes with restrictions maps on the base, hence we get a sheaf morphism:
£l Oy — fy.0x

The assignment ¢ — (fy, fi) then defines a set map ¥ : Hom(0y (Y), Ox (X)) — Hom(X,Y).
We check that ® and ¥ are inverses of one another. Let 1) € Hom(0y (Y), Ox (X)), then we see that:

®oU(Y) = (f)y
It suffices to check that:
Yopa=(fl)yopa
Well, note that by construction ( fi)y o @4 is equivalent to the composition:
A— Ox(X)1 — Ox(X)

which since there is nothing to invert is the map b — 9(p4(b)), hence (fi)y =1, and P o ¥ = Id.
Now let (f, f*) € Hom(X,Y), and set ¢ = ff/, then we want to show that:

(f, 1) = (f4. 1)

We first check that the topological maps are equal, in particular, we want to show that:

fl@) = o3 (67 (m7 ! (ma)))

Let a € f(x), then since f(x) is a prime ideal, we see that v 4(a) is a section which vanishes at f(z), i.e
©4(a) ¢(g) lies in the unique maximal ideal my ;) = Ay (,. It follows that:

a($(a(a) = (f(pal@))e = [X, f(pa)] = [f 7 (V) fi-(0a)] = fulpala) sa)

since f; is a morphism of local rings, we must have that 7, (¢(¢a(a))) € m,, hencea € p ;' (¢~ (71 (m,))).
Now suppose that a € ' (¢~ (51 (m,))), then it follows that f.(¢a(a)f()) € My, and if pa(a) ;) ¢
My (), then a(a)s(y) is a unit in (Oy ) ¢(yy, implying that m, = (Ox ), contradicting the fact that m, is
maximal, hence a € f(z) as well, so f(x) = fs(x) as desired.

To check that fg = f*, it suffices to check they agree on distinguished opens U, C Spec A by
Corollary 1.4.2. In particular, it suffices to check that the induced maps:

Aa — ﬁx (Xg)
where g = ¢(pa(a)) agree. Let b/a* € A,, then:
(f5)u. (9a(0)/0a(a¥)) =p(pa(D))| X, - h*

=f} (pa®)lv,) - h*
=f} (pa®)v,) - (¢"[x,) "
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Now note that:

glx, = fi(0al@)lx, = f (pala)|v,)

hence:

(¢"x,) " = £l (pala)|u,) ™"

however p4(a)|y, invertible in Oy (U,) hence:

(9" [x,) " = ffi, (pal@)lgh)

(. (pa®)/pa(@®) =ff (ea®lv,) - fF, (Lala)l;¥)
=f& (a®|v, - va(@)l;")
g [(pald) 1
‘fUa< ] m(a>k>
=% (pa(b)/pa(a"))

implying that f;; = ff. We thus have that:

Vo d(f, f*) = (fo. f3) = (£, 1)
hence ¥ o & = Id implying the claim. O

Note that since Z is the initial object in the category of rings, there exists a unique morphism
X — SpecZ for every scheme X. As promised earlier, we now discuss how to put an induced subscheme
structure on Zariski closed subsets of a scheme.
Definition 2.1.3. Let (X, 0x) be a scheme, and Y a Zariski closed subset of X, then the sheaf of
ideals is given by the assignment U +— I(U), where:

IU)={s€eOx(U):YreYNU,s, €m,}

That is I(U) is the subgroup of sections on U which vanish on Y N U.
We quickly check that this is a sheaf:
Lemma 2.1.4. The assignment U — I(U) defines a sheaf on X.

Proof. Clearly if s € I(U), and VNU # 0, then s|y € I(U) as (s|v )z = s, for all € V, so the restriction
maps are precisely the same as the ones on X. Now let U; be an open cover for U, and s € I(U) such
that s|y, = 0 for all i. Then since 0 € I(U), and Ox is a sheaf it follows that s € I(U) is equal to zero,
implying sheaf axiom one. To prove sheaf axiom two, take U; as before, and let s; € I(U;) such that
silu.nu; = sjluinu;, then there exists an s € Ox (U) such that sy, = s; for all U;. For all x € U we have
that = € U; for some i, hence s, = (s;)s, so if x € Y then s, € m, implying that s € I(U) so U is a
sheaf. O

Given that we have just constructed a sheaf of ideals on X, it should be obvious that we are about
construct a new ‘quotient sheaf’ of rings on X. Our plan of action is as follows: to construct this sheaf
Ox /1, then define the structure of sheaf on Y to be 0y = 1=(0x /I) , and finally to show that this gives
Y the structure of a scheme, when equipped with the subspace topology.

Let us first examine the affine case. Let X = Spec 4, and Y = V(I) for some radical ideal I of A.
Then for a distinguished open U, C Spec A, we have that:

ﬁX(Ug) = Ag

Now note that V(I) N Uy is a closed subset of U, when equipped with the subspace topology, so V(I)NU,
corresponds to the vanishing set of an ideal I, C A;,. We claim that:

Ig:{a/gkeAg:aEI}
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As an abuse of notation, and confidence, denote the above set by I, then we need to show that:
V(1,) = n(V(1) N U,)
where 7 is the homeomorphism Spec A — Spec A,. We have that:
V(I)NUy={peSpecA: I Cpandg¢p}
so:
n(V(I)NUy) = {n(p) € Spec Ay : I Cp and g ¢ p}

However,

n(p)={gpk:pep,k>0}

Clearly if g ¢ p, then n(p) € Spec Ay, as otherwise 7 is not defined. If I C p, then we also clearly have that
I, Cp, as for a/gk € I, we have that a € I C p. It follows that n(V(I)NU,) C V(I,). Now let q € V(I,),
then I, C q, and q is of the form n(p) for some p € U,. Moreover, we have that 7—'(I;) = I C p, so
p € V(I) N Uy, and thus ¢ = n(p) € n(V(I) N Uy). It follows that V(I,) C U, NV(I,), so we obtain the
desired equality. We can now calculate I(U) to be

I(Uy) ={s € Ox(U,) :Vqe V(I)NUy,,s € q}
{a/g" € Ay :Vq € V(Iy),a/g" € q}

(] «

qeV(lq)
=1,

Note that I, C /I, automatically, and that if a/ gk € I, we have that there is some r such that
a”/g*" € I, implying that a” € I, so a € VI =1 as I is radical. Tt follows that:

12

Il

1(U,) =1,
hence:
ﬁX(Ug)/I(Ug) = Ag/Ig

We now have the following lemma;:

Lemma 2.1.5. Let X = Spec A, andY = V(I) for some radical ideal I, then the assignment U, — Ag,/I,
defines a sheaf on the base of distinguished opens.

Proof. Let U, C Uy, then recall 1/(g) C /(f), so there exists an m > 0, and b € A such that ¢ = f-b.
It follows that the image of f is a unit in Ay, so we get a restriction map given by:

a a-bk

T g
If a/ f* € Iy, then a € I, and certainly a - b* € I hence a/f*|y, € I,. It follows that we get well defined
restriction maps given by Ay/I — Ay/I, :

[a/f*] — [a - 0" /g™"]

so we have a presheaf on the distinguished opens.

By Lemma 1.4.1 and Lemma 1.4.2 it suffices to take all covers to be finite. Now let Uy, be an open
cover Uy, and [a/f*] € Ay/I; such that [a/fk]\Ugi = 0 for all i. Note, that [a/f*] induced a unique
element in Ox (Uy)/I(Uy), and similarly for it’s restrictions. Denote this element by s, if the restrictions
are all 0, then s, € my, for all p € Y N Uy, as sy = (s|v,, )p and Uy, cover Uy. It follows that s € I(Uy),

hence [a/f*] € 1, so [a/f*] = 0.
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Now let Uy, be an open cover of Uy and [a/g¥] € A,, /I, such that:
a- g’
Ji ] (2.1.4)

a- gfi B
(gig;)kiki (gigj)kiki

for all Uy, ,, = Uy, NUy,;. We first show that Ay, /I, = (A/I)(4,). Define the map:

— [a]/1

and note that g; is clearly a unit in this map, with inverse given by 1/[g;] so we have a unique homomor-
phism

Agi — (A/T)
a/g; — la]lg:]*

[9:]

This map is clearly surjective; now let a/gF € I,,, then a € I, so [a] = 0, hence a/gFk — 0/[g:]* = 0.
Suppose that a/gF — 0, then we have that:

e =0= (oM o) =0

We see that this implies that g™ - a € I, so gM - a/1 € I,,,, implying that a/1 € I,,, hence a/gF € I ,. Tt
follows that the kernel of the map is equal to I,, hence the induced unique homomorphism:

Agi /Igi — (A/I)[gb]
[a/g5] — lal/lg:]"
is an isomorphism. The expression (2.3) is then equivalent to:

J

a9y [a-g,
[(9ig5)* %] [(gigs)*

k;
i
Fiks]
The same argument in Proposition 1.4.3 then proves the claim, as we are now just dealing with localiza-
tions of some ring A/I.

O

Take any g € I, then note that V(1) NU, = 0, indeed if p € V(I), then I C p, hence g € p, so p ¢ U,.
Moreover, if p € U, then g ¢ p, so p ¢ V(I). It follows that V(I,;) = (), implying that I, = A,, hence:

ﬁX(Ug)/I(Ug) = {O}

Lemma 2.1.6. The assignment U — Ox(U)/I(U), where U is open and affine defines a sheaf on the
basis of affine opens for X.

Proof. Let U and be V' be open affines in X such that V' C U. Then, we define restriction maps by:

[s] € Ox(U)/1(U) — [0V (s)] € Ox(V)/1(U)

i.e. we choose a class representative s € [s], restrict to Ox (V) and the project again. Since I is a sheaf
of ideals, it follows that this is independent of the class representative chosen, and thus well defined.

Now let U be open affine, U; an open cover of U by open affines, and [s] € Ox(U)/I(U) such that
[s]|u, = 0 for all ¢. This implies that s € [s] restricts to an element in I(U;) for all i, and since s, = (s|v, )
for all « € U;, it follows that for all x € Y N U we have s, € m,, implying that s € I(U), hence [s] = 0,
so sheaf on a base axiom one is satisfied.

Now let U be open and affine, U; be an open cover of U by open affines and [s;] € Ox(U;)/1(U;) be
sections such that for all open affines U;; C U; N U; we have:

[s:]

Ui; = [sj} Uij
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Now note that U is isomorphic as a scheme to Spec A for some ring A, so we can take {U;} to be a
finite open cover by Lemma 1.4.1 and Lemma 1.4.2. We also have that U N Y = V(J) for some radical
ideal J C A. Under this identification, each U; can be written as a finite union of distinguished opens of
Spec A:

Ui= | U,
a; EA

and see that:

UinU; = (UU(“) n UV,

a;

= |J Ua, N0,

a;,ay

U Uara,

ai,a;

Now note that U,,.q; is then an affine open subset of U; N Uj, hence:
[$illUa;.a;, = [85]lUa; 0
Moreover, we have that:
[sillv, Va0, = [8illUn, .0,

and that for a; and b; we clearly have that [Sz‘HU%»bi = [siHwai, so by reindexing to include all a;,
we obtain a finite open cover of Spec A by distinguished opens {Uy, }ier, and sections [t;] := [si]|v,, €
Ospec A(Ua;)/I(Ua;) = (A/J)[a,) such that:

tillv., nva, = llva,av,

for all Uy, N Uy;. Lemma 2.1.5 then gives us an element [s] € Ogpeca(U)/I(U) = A/J such that
[s]|lv., = [ti] for all i. We show that [s]|y, = [s;]. Recall that U; is covered by distinguished opens U,,,
and that for each a;:

([8llv: = [siD) lv., = [ti] = [t:] =0 (2.1.5)
it follows by sheaf on a base axiom one that [s]|y, = [s;], implying the claim. O

Proposition 2.1.3. Let X = Spec A, Y = V(J) for some radical ideal J, I be the sheaf of ideals induced
byY, Ox /I the sheaf induced by Lemma 2.1.5, and v : Y — X the inclusion map. Then'Y , equipped with
subspace topology, and the structure sheaf Oy = 1=10x /I is an affine scheme isomorphic to Spec A/J.

Proof. We first define a homeomorphism f : V(J) — Spec A/J. Let 7 : A — A/J be the projection map,
and p C V(J), then we claim that 7(p) C A/J is a prime ideal in A/J. It is clear that 7(p) is a group,
we check that m(p) is an ideal. Suppose that [a] € w(p) and [b] € A/J, then there we see there is some
i € J such that a + i € p, and it follows that (a + ) - b € p. We thus must have that [(a + ) - b] € 7(p),
however:

[(a+ 1) - b] = [ab+ ib] = [ab] + i[b] = [ab] = [a] - [V]

so m(p) swallows multiplication and is thus an ideal. We now show that 7 (p) is prime, let [a] and [b] € A/J,
such that [a] - [b] € 7(p). It follows that [a-b] € 7(p), hence there is some jqp € J such that a-b+ jap € p.
Since p is closed under addition, and —ju, € J C p, it follows that a - b € p, hence either a or b € p,
implying that either [a] or [b] lies in w(p).

We thus define:
f:V(J) — Spec A/J

by p — m(p). This map is surjective, as if q € Spec A/J, we have that w(7~*(q)) = q, since 7 is
surjective. Now suppose that m(p) = 7(q), then we need to show that p = q. Let a € p, then [a] € 7(p),
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and [a] € 7(q). Since [a] € 7(q), there is a j € J such that a + j € q. However J C ¢, and again q is
closed under subtraction so a+j —j = a € q, and p C q. The same argument shows that ¢ C p, implying
injectivity.

We claim that this map is continuous, and it suffices to check this on basic opens. Let Uy, be a
distinguished open, then:

We claim that:

{peV():m '(([g]) Zp} ={p V() : (g9) Z p}

Let p € V(J) such that 7=1({[g])) ¢ p, then we want to show that (g) ¢ p. Well, we have that there
exists an a € 77 1({[g])) ¢ p, and a = b - g*¥ + j for some j € J. Clearly, b-g* +j & p, but j € J C p, so
the only way this holds is if b- g* ¢ p. We have that b- g* € (g), so (g) ¢ p. Now suppose that (g) Z p,
then there exists some a € (g) such that a ¢ p. However, a = b- g*, so [a] = [b] - [9]* € ([g]), hence
a € m*(([g])) implying that ([g]) Z p. It follows that:

FHU) =tp e V() : (9) ¢ p}
=V(J)NU,

which is open the subspace topology.

We claim that this map is open and thus a homeomorphism. Note that {V(J) NUy}ge4 is a basis for
V(J), and since f is a bijection, we have that:

FV(I)NUy) = f(f (Uyg) = Uy

so f is open.

Now note that if + : V(J) — Spec A is the inclusion map, and f=! : Spec A/J — V(J) is the
homeomorphism, we have that to f~! : Spec A/J — Spec A comes from the ring homomorphism 7 : A —
A/J. We want to construct a sheaf isomorphism:

(fil)ﬁ : LilﬁX/I — f;lﬁSpecA/J

and by Theorem 1.3.1 and Corollary 2.1.1 it suffices to define a sheaf isomorphism:

F:Ox)I — t.f Ospecayg = (L0 f)O%pec ass

We do so on a basis of distinguished opens U,. Since f~! o is topological map coming from the the
projection m : A — A/J, we have that if g € J, then (vo f~1)~1(U,) = Ulg) = Up = 0. By our earlier
discussion we have that 0x /I(Uy) = {0} so our isomorphism on these open sets is trivial.

In the case where g ¢ J, we have that Ox/I(Uy) = Ay/Jy = (A/J)(g), while Ogpec 4/7(Upg) =
(A/J)ig- These isomorphisms clearly commute with restrictions on a distinguished base, so F' is an

isomorphism. We define (f~!)% to be the sheaf isomorphism induced by the isomorphism in Theorem 1.3.1,
hence (f~1, (f71)*) : Spec A/J — V(J) is an isomorphism as desired. O

We can now prove the desired claim:

Theorem 2.1.2. Let X be a scheme, Y a Zariski closed subset of X, and I the sheaf of ideals on X
induced by Y. Then there exists the natural structure of a scheme on Y, such that for all affine opens
UcCcX,o0y(UNY)=Z0x(U)/IU).

Proof. Equip Y with the subspace topology, and the sheaf 1=1@x /I, where Ox /I is the sheaf induced
by Lemma 2.1.6, and ¢ : Y — X is the inclusion map. We need to show that every point in Y has an
open neighborhood isomorphic to an affine scheme. Let y € Y, then since Y C X, there is an open
neighborhood U of y in X, such that U = Spec A, and let f : U — Spec A be the isomorphism. Now
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note that U NY is open in subspace topology on Y, and closed in the subspace topology on U. It follows
that there is radical ideal J C A, such that f(UNY) = V(J) C Spec A. Now f* gives an isomorphism:

fﬁ : ﬁSpecA — f*ﬁU = f*(ﬁX|U)

We claim that this induces an isomorphism:

i Iy — flv)

where Iy is the sheaf of ideals on Spec A induced by V(.J). Indeed, let V' C Spec 4; if s € Iy(;(V'), then
sp €my forallp € VNV(J). Forallallp e VNV(J) let p = f(z) for some unique z € f~1(V)NUNY.
Then since f is a morphism of locally ringed spaces we have that f,(sp) € m, for all z € f~!(V), hence:

Falsp) = fol[Visly) = [F V), S ()] = (fE(5))e € My

S0 f‘ﬁ/(s) e I(f~1(V)) for all s € Iy(;y(V). Now let t € I(f~*(V)), then since f‘i} is an isomorphism there
exists an s € Ogpec 4(V) such that f‘u/(s) =1,50 fy(sp) =ty €my forallz € f~1(V)NY, where p = f(x).
However, f, is an isomorphism, so since m,, is the unique maximal ideal, and isomorphisms map maximal
ideals to maximal ideals, we must have that f,(m,) = m,, hence s, € m, for all p € V(J) N V. It follows
that f% induces an isomorphism of ideal sheafs, as desired.

We now claim that this induces an isomorphism:
JF‘j : ﬁSpecA/IV(J) — f*(ﬁX/HU)

Indeed, note that for any distinguished open set U,, we clearly have that f~!(U,) C U C X is then
clearly an affine open, and we have that:

(Ospec a/Lv(1))(Ug) = Ospec A(Uy) [ Ly(5)(Uy)
while:
F(Ox [TI0)(Uy) = Ox [1(f 71 (Uy)) = Ox (f 1 (Uy)/I(f~H(Uy))

By Corollary 1.4.2 it thus suffices to define morphisms:

Yu, : Ospec aA(Uy) /Ty (Ug) — Ox (f 1 (U))/1(f71(U,))
which commute with restriction maps, but we clearly already have one induced by f¥. Indeed, set:

Yo, ([s]) = [£(s)]

which is clearly well defined, and obviously commute with said restrictions. The maps then induce the
desired isomorphism of sheaves f* : Ogpec 4/Iy(5) — fo(Ox/I|v).

We now switch to the topological picture and equip U N'Y with the subspace topology induced by
Y, and V(J) equipped with the subspace topology on Spec A, we want f|yny : UNY — V(J) to be a
homeomorphism. We first see that it is continuous, as if W C V(J) is open, then W = VNV(J) for some
open subset V' C Spec A. It follows that:

fony W) =71V NnVW) = F7HV)n 71 V() = f7H(V)Nn(UNY)
We see that f~1(V) is open in U, and thus open in X, so it follows that f~1(V)NY is open in Y. Since:
N Uny)=('(Vv)ny)nUny)

it follows that f|,;r17Y(W) is open in U NY, so f is continuous. Now let W C U NY be open, then
W =VnUnNY) for some open subset V C Y, but for V to be open in Y we must have that V =2ZNY
for some Z open in X. We see that:

flooy(W) = f(ZnYnUNY))=f(ZnUNY))=f(ZnU)N({UNY))
and since f is a bijection:

flory (W) = f(ZnU)N fUNY) = f(ZNnU)NV(J)
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since f : U — Spec A is a homeomorphism, it follows that f(ZNU) is open in Spec A, hence f(ZNU)NV(J)
is open in V(J). We thus that have that f|yny is a homeomorphism U NY — V(J).

So now we have a homeomorphism g = flyny : UNY — V(J), we claim that there then exists an
isomorphism of sheaves:

LK_/(IJ)(ﬁSpec A/IV(J)) = g*(bil(ﬁx/I”Umy)

We shall prove this by use of Theorem 1.3.1 and Corollary 2.1.1, and by noting that we have the following
commutative square of topological maps:

U f Spec A
o J;
uny g V(J)
Now note that by Corollary 2.1.1 suffices to show that:

g7 (LQ(lJ)(ﬁSpecA/IV(J))) =, Ox/I)|uny
Now note that since (ty()0g)« = g« 0ty (s)«, 80 by Theorem 1.3.1, we have that (vy(sy0g)~! = g7* OLQ({]),
and by the diagram above we have that vy(;) 0o g = f o tyny, so it suffices to show that:

(f owwry) N Ospec a/Lviny) = (Ox /Duny
Now we have that:
(f o wny)  (Ospec a/Ty(7)) = timy (f 71 (Ospec a/Ty()))

Now by our earlier, we work we have that the image of f# under the isomorphism in Theorem 1.3.1 gives
an isomorphism f_l(ﬁspeCA/IV(J)) ~ 0x /1|y, hence we have that:

(f o wny) N Ospec a/Tv()) = trhy (Ox /1I|v)
so it suffices to show that:
Wiy (Ox/Tlv) 27 (Ox /Dlvay
Recall that Ox /1|y = ;' Ox /I by Corollary 1.3.2, so we have that the left hand side satisfies:
Loty (Ox /Tv) = (o wny) FOx /I
while the right hand side satisfies:
N Ox/Dony = (Lo wny)  Ox /1

Now the issue is that technically have two different inclusion maps tyny. The first is cyny : UNY — U,
and the the second is tyny : UNY — Y, however, clearly when composed with ¢y : U — X, and
t:Y — X, we find that t o tyny = 1y o tyny, as topological maps. It follows that:

(trotwny) Ox /I = (Lowny) 1Ox/I
So reversing this chain of isomorphisms gives the desired result:
gﬁ : L§(1J)(ﬁspecA/IV(J)) — 9*(L71(ﬁX/I)|UﬁY)

It follows that (U NY, Oy|uny) = (V(J), Oy(y)), and hence by Proposition 2.1.3 that (UNY, Oy|uny) =
(Spec A/J, Ospec 4/7), s0 Y is indeed a scheme.

Moreover, we see that:

Oy(UNY)=0Oyluny(UNY) = Ogpec ays(Spec A/ J) = A)J
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while:
Ox(U)= A
and:
IU)y=zJcCcA
hence:
Ox(U)/1(U) = A/J
implying the claim. O

2.2 The Proj Construction

Our very first examples of schemes were affine ones, and now pretty much all the examples we have
encountered are either open/closed subschemes of affine schemes, or a gluing of two affine schemes. In
fact Example 2.1.5 is the motivating example for this section, it being the simplest example of what we
will call a projective scheme. Indeed, our goal in this section is to discuss the analogue of projective space
in differential geometry. We begin with the following example; reader be warned this is a mildly messy
computation, and the checking of certain details are most likely best done on your own.

Example 2.2.1. Consider the variables g, ..., x,, and n + 1 rings:
o i‘z T Zo Tn

A; = — iy — e, — | EC | —, ..., — i/x; — 1

) xia 7xl_a 71’i:| [%‘7 ?xi:|/<‘r’b/xl >

which gives us n + 1 schemes X; = Spec A;. We note that for each 4, the x;/x; is just a dummy variable
to remind us of how this object is related to the coordinate charts on P* = C"**! \ 0/C*.

For all 4,7 and we set U;; C X; to be Uy, /s, i.e the distinguished open set corresponding to the
localization of A; at x;/x;. We need to write down isomorphisms ¢;; : U;; = Uj;, and since all schemes
are affine, it suffices to provide ring homomorphisms:

0+ (A))arf; — (Ad)a, a,
We suggestively denote 1/(x;/x;) by x;/x;, and consider the morphism:

o Z; T
gﬁj;c[m,...,%...,"]

i) {i\ﬁl Tn I
C [ S
J T T

sy sy s
ZT; €T; T Ty

induced by the following assignment on generators:

(xr/xi) - (@ifzy)-  ifk#id
xk/l'j — {Z‘i/l‘j itk =1

Per our suggestive notation, we see that x;/z; is then a unit under the image of 5?;‘ as:

ehifa) - xyfa = (wifay) - (2/2s) = (U (@ /e)) (x5 /@) = 1

We thus set qbgj to be the unique morphism induced by the universal property of localization, which is
given on generators by:

t . i) Xy Tn Ty
¢ Cc|=,.., 2, =

Zo j:i Tn T4
Z; Z; T; I

geeey geeey

€T; xZ; ZL’i’.’Ej
(x1/z;) - (xi/xy) HlFim=j

xj/x; ifl=j,m=i
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Note that this is an isomorphism, as the map in the other direction

i) jz Tn ITj i) i‘j Tn Ty

T o e cl|=,..., 2,2
xX; xX; Xr; X € € Tj T

(w1 /aj) - (/i) i LF jym =i

T/ Tm — S xj /2 ifl=j,m=1

xi/T; ifl=i,m=3j

1

satisfies ¢2‘1‘ = (qﬁ?j)_l, hence, we alsow have that the induced scheme morphisms must satisfy ¢;; = i -

Now we note that:

. N Z; Tn Tp T;
Uij NUik = Us, ja; N Uz jz; = Ula, /2)) (@ /i) = SPecC _E? U T ;j’ zJ
while:
_ _ ~ [0 Z; Tn Tj &
Uit VUit = Usijey MUz /z, = Ut fay @) & SPeCC I 20, 2o 20 20 m’j

where again we have that (z;/2x) 1= (zx/2;) " and (z;/xy) := (2x/z;) . We thus want ¢i;(Ua, /o) (24 /20)) =
Ula, ja;) (@ j2;)> and consider Uiy, ju)(aey/x:) A0 Ue,/2;)(xy,/2;) @ distinguished open sets of the affine
schemes U, /., = Spec C[{wy /@i }pis zi/x;] and Uy, o, = Spec C[{wg, z;} k), 2j/7:]. Note that if k = i,
then the statement is trivial.

Now suppose that p € Uy, /2, (21, /x;), then we have that p € Spec C[{wk, T; } k), 5/, and zx /z; ¢ p,
it follows that since qbgj  (Aj)zi/e; = (Ai)z, /e, s an isomorphism, that ¢§j(p) is a prime ideal of
(Ai)a, /o, which satisfies (¢>§j)71(¢§j(33)) = ¢ij(¢§j(p)) = p. Moreover, since z/z; ¢ p, we have that
qﬁgj(ack/xj) =axp/x; - xifx; ¢ qbgj(p), hence xy/xz; ¢ qbgj(p) as x;/x; is a unit in (A;)y, /2,- It follows that
9%1(9) € Utay /a0 anf0)r 50 B € 615 (Ule, f) (@ f0))-

We now let p € ¢ (U, /2 (ar/ai)), then p = (q{)gj)_l(q), for some q € Uy, /2:)(ws /2:), implying that

zk/x; ¢ q. Since zy/x; ¢ q, we have that (gzﬁgj)’l(xk/xi) = ai/xj - (zj/z;) ¢ (qﬁgj)*l(q) = p, hence
xy/x; ¢ p. It follows by the same argument that p € U, /a,)(ay/a;)> 50 ¢ij(Uiz N Usit) = Uy N Ujy, as
desired.

We now need to check that on U;; N Uy, we have:
ik = Pjk © Gij

Now note that ¢ik(Uz‘j n Uz'k) = Ukj NUg = U(gjj/wk).(xk/xi) = SpeC(C{{ZEl/Ik}l;gk,Jfk/.’lij,wk/l‘i}, SO
the ring map which induces the morphism of schemes ¢ik|U7:Jﬂch 2 Uiy NUs, — Uy N Uy, is given on
generators by:

(D50, jers onrens  CHm Th ik w2, @ fwi) — Cla/wibisi, (@) w5), (x:/ar)]
(xr/x;) - (wi/xy) Hl#i,m=k

i .f :' =
T/ T — i/ fl i,m k
Ty /2 ifl=km=1
(mz/x])(xk/xz) ifl="km=j

Now we essentially want to show that:
# (At i
(¢m)U<zj/wk>~<zk/zi> = (¢ij)U<z7:/rj>~<wk/wj> © ((bjk)(%/fk)'(xk/xi)

well similarly we have that (qbg-k)(m]. Jax)-(x/z;) 18 given on generators by:

(050) (@ o) sy * CH@L Tk i /g, /i) — Clmn/w by, (w5/23), (2 /1)

(@i/z;) - (xj/x)  EL#jm=k
) -f :. =
B

TR/x; ifl=km=j

(xj/z;) - (xp/z;) fl=km=1
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while:

(¢§j)U<Ti/mj>.(zk/zj> s Cl{ai /s b1z, (w5 20), (/)] — CH{a /i bz, (i) 7)), (2i/78)]

(xi/zi) - (xifz;)  HlFim=]
xi/T; ifl=i,m=3j
#1/m — xj/z; ifl=j,m=1
(zifar) - (zj/zi) Hl=jm=k

We now check that these agree on generators. Let z;/xy € C[{zy, xx b1k, T /i, T /x;], such that [ # j,
then:

(D)0t sy o s © (D) i) (o @/ 20) = (5 v,y () 2)) - (5 /20))
If [ # 4, we have that:
(qsgj)U(wi/xj).(xk/wj)((xl/xj) @j/wk)) = (/@) - (@ifzj) - (@i/z) - (25/25) = (@ /2i) - (2i/28)
however:
(G50, err con o @1/TR) = (20/20) - (i /28
If | = 4, then we have that:
(¢gj>U(Ii/Ij).(mk/xj)((mi/xj) (wj/wr)) = (vi/xy) - (vi/ar) - (x5/2:) = @3 /2,
but:
(G5 Ucr, oy op oy (@i T8) = i

Now suppose that [ = j, then:
(gbgj)U(xi/zj)‘(Tk/-Tj) © (¢§k)(1j/rk)'(rk/fi)(xj/xk) :(¢§j)U(zi/mj)-(mk/w_j)(‘Tj/xk)
=(zi/zx) - (xj/2i)
while:
(¢§k‘)U(zj/zi)-(zk/zi)(x]’/xk) = (xj/xi) ’ (xl/xk)
Now for xy/z;, we have that:
((bgj)U(xi/zj)«zk/zw © (d)g‘k)(wj/%)'(mk/wi)(xk/xj) :(djga‘)U(zi/Ij)-(zk/rn(xk/mj)
=(zr/z;) - (xi/25)
while:
((ngk)U(zj/mi)(zk/zi)(xk/xj) = (.’Z,L/Z']) ’ (xk/xl)
And finally for xy/z;:
(¢§j)U(z,i/Zj)»(zk/zj) © (qbgk)(wj/:rk)(wk/wl)(xk/$l) :(Qﬁg]‘)U(zi/Ij)_(zk/Ij)((xj/xi) : (xk/xj))
=(zj/xi) - (xr/2i) - (2i/7;)

=Tk /T;
while:
(qsgk)U(zj/z,i)»(zk/xi) (g /2;) = wp /5

so indeed we have that:

# _ (Al #
(qsik)U(zj/zm»(z;c/wn - (Qsij)Umi/zj)»(zk/zj) © (¢jk)(%‘/$k)'(wk/wi)
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implying that:
bik = Qjk © Pij

as desired. It follows by Theorem 2.1.1 that the affine schemes Spec A; glue together to form a scheme
which we denote by P¢. We denote the open embeddings Spec A; — P¢ by %;, their topological images
in P¢ by A;, and the sheaf isomorphisms @ 4,|4,n4; = Oa,|a.na; DY Bij-

We see that P¢ is not affine by calculating it’s global ring of sections. We have that:

Opr (PE) = {(Si) € H O, (Ai) 2 Vi, 4, Bij(sil aina,) = 8j|AmAj}
i=0

We first note that:
Ai N Aj = ¥i(Uij) = »i((Us, /a,))
and that:
ﬁAi (‘Al) = Ai

Denote by m;; the localization map A; — (AZ-)IJ. Jx;» then it follows that:

oy (P2) 2 {(si) e [ A4 : Vi.j, ¢ (mij(s0) = m(sﬂ}

=0

We know that any element in A; and A; can only be written as polynomials in the variables z;/x; and
Zm/xj, where [ # i and m # j, and the localization maps are the inclusions into the polynomial rings
discussed above. We see that for [ # j:

& (@i /wi) = (w1/25) - (x5/2:) ¢ iy,

and that if | = j then:
$hilwj/2i) = xj/x; ¢ immy,

hence the only polynomials s; € A; which can possibly satisfy ¢§Z(7Tu(81)) = m;;(s;) are the constant

ones. However, qﬁgi o m;; is the identity on constant polynomials, hence we must have that:

Opr (PR) = {(si) e[[C:Vijsi= sj} ~C

i=0
so P¢ is certainly not affine.

We now discuss why we denote this by P%, by showing that is an analogue of complex projective space
P from differential geometry. First note that C is algebraically closed, so by the weak Nullstellensatz”,
the maximal ideals of A; are of the form:

5 Lo Z; Ln
(20« vy Ziy vy 2n) i= < —ZO,...,,...,—Zn>
where z; € C for all j. It is easy that any maximal ideal corresponds to a closed point of Spec A; and
any closed point of Spec A; must in turn be a maximal ideal. Since the embeddings v; determine the
topology on Pg, so a point [z] € PZ is closed, if only if 1/1;1([;10]) is a maximal ideal of A; for all i**. Let
[z] € A; be closed, if [z] ¢ A; for any other j # i then we claim that is the origin in Spec A;:

S = 00 = (e T )

) ) )
T T T

230ne could also potentially argue this fact using Zariski’s lemma (Theorem 6.1.3), and the fact that C is algebraically
closed.
24Note that if = ¢ A;, then we have that w:l([x]) is empty and thus closed
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Indeed, if [z] ¢ A;, then we must have that ¢; *([z]) ¢ U;; for all 4, implying that z;/z; € ¢; ' ([z]) for
all 7, so clearly ¥ ' ([x]) is the origin. Now if [2] € A; N A;, we have that [2] € 1;(Ui;) = v, (Uj:), hence
¥ ([x]), is equivalent to w;l([m]) Indeed, we have that ;! ([z]) € U;;, and w;l([m]) € Uj;. We need
to show that:

i (07 ([2])) = v5 ' ([2])
Well, apply v; to the left hand side:
bj(dss (0 ([2]))) = iy ([2])) = [2]

while clearly wj(wj_l([x])) = [x], so since 9, is injective we have the desired equality, implying ;" Y([z]) ~

1/1;1([:6]) Now let:

_ N Zo T; x
wi1([x]):xi=(zo,...,zi,...,zn):<'—zo,...,z,...,fb—zn>

and that under ¢;; we have that:

To Ty i‘j Zj Tn Tj
qbl](‘rl): <'_Z07"'7a"'a_zja"'a_Zn
l'j €T {17]‘ xX; T; Tj

To Ty .’i‘j Z; 1 Ty Tj
(bij(xi): T T T 2y ey Ty T T T e, — — 2
Zj Z; Zj Zj Z4 Tj Ty

We claim that this ideal is equal to:

Ty 20 Z; T; 1 Tn  Zn
J=(——=— . ., =, — =, — = —

Zj Zj Zj Zj Zj Ty Zj

so (zr/xy) - (x;/x;) — 21 € J as well. It follows that:

20 1 Zn
.Tj: 7,""774""77‘
Zj Zj Zj

We denote the set of closed points of X; = Spec A; by | X;|, and construct a set map:

F:ﬁ\Xi|—>IP"

i=0
T; = (Z(),...,fi,...,zn) € Xl — [ZQ,...,Zi_l,].,Zi,...,Zn]
and note that such a map is clearly surjective, as every equivalence class [wo, ..., w,] must have at least

one non zero entry wg, so we can always rescale to obtain something of the above form. Moreover, we
see that if z; ~ x;, then we have that by our previous work:

e zic1 1z R Zn
J/‘]— 7‘7...77‘77-’7‘,...,2]',...,7-
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S0:
r RES Zzi-1 1z %1 Zit Zn
(.’L'j)— 7".._7 ] 77,’ R — s ) 77
Zj I | Zj Zj Zj
:[207-"azi—lalazi-‘rh"'7Zj—17Zj7Zj+1a"~7Zn}
=F(z;)

so F' factors through the quotient, and we thus obtain a map:
F:|PR| — P"
[2] — F(y; ()

for any 4 such that [z] € A;. It is already surjective as F' is surjective, so it suffices to check that if
F(z;) = F(y;) then x; ~ y;. First note that if j = ¢, then we clearly have that z; = y;, as the only way
for:

(Zl7 ce ey Ri—1, 17 Zi+1, Zn) = )‘(wla sy Ri—1, 15 Z’i+17wn))
is if 1 = A. Now suppose that:
[207-~-,Zi—1,1,zi+1,"'2n] = [w07~--awj—1717wj+17-~-7wn]

then we must clearly have that w;,z; # 0, hence x; € U;; and y; € Uj;. It follows that we can rewrite
the right hand side as:

Wo W;—1 1wi+1
) ) ) PR ) ) ) AR |

Wj—1 1 Wji+1 W,
w;’ w; w; w; w; w;

Since the right hand side now has 1 in the ith spot, it follows that:

w,
2k = —
wj
hence:
Tp= ¢jz‘(yj)

so the z; ~ y; and F injective. It follows that F' is a set isomorphism, so we can identify the closed
points of P¢ with the classical projective space P". We thus call P¢ the n-dimensional projective scheme
over C.

Note, that in the gluing process, we never used the fact that C was a field, or algebraically closed, so
we could easily repeat this process with any ring or field A and obtain a projective scheme P7. We will
however, lose the identification of closed points with classical projective space. Indeed, if we were to look
at P}, then ((z/y)*> 4+ 1) € SpecR[z/y] C P} is a closed point, but has no corresponding element in RP!.

Now before we move onto to discussing projective schemes in generality, we quickly show that Pg
satisfies another property which make it’s remarkably similar to P™. Indeed, there exits a canonical map
Cntl {0} — CP" given by:

(20, 2n) — 20, -, Zn]

We show now show a similar statement for the scheme P¢.

Lemma 2.2.1. Let PZ be the scheme constructed in Evample 2.1.5, and A" < {0} the affine scheme
Spec Clzo, ..., x,] minus the closed point (xq,...,x,). Then there exists a morphism:

A" {0} — PR
which one closed points satisfies:
(20, 2n) — 20, -, Zn]

under the identification of |Pg| with P™.
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Proof. Note that A"*! <\ {0} is indeed an open subscheme of A"*! and admits an open cover of distin-
guished opens by:

n
AN o= U,
i=0
We also note by Corollary 1.2; that the structure sheaf on A"+ <\ {0}, which we denote by Y going

forward, is isomorphic to the one obtained by gluing the sheafs 0y, = ﬁAn+1|Uri together, where the
transition functions 3;; : Ou Up,(Us, — ﬁ’ij |Umiﬂij are the identity maps. It is then clear that the

T4

sheaf of global sections is satisfies Oy (Y) 2 Clxo, . .., x,] by the same argument in Fxample 2.1.2.

We will now make use of of Proposition 1.3.3 to obtain a morphism of locally ringed spaces. We note
that X; = SpecC[{z;/x;}i1»] is an embedded open subscheme of P¢ for all 0 < ¢ < n, such that the
closed points X, correspond precisely to the closed points of A; = 1;(X;) which can be written in the
form:

[20, ey Ri—1, 1;Zi+17 .. .7Zn]

It thus makes sense to define morphisms &; : U;, — X, and then compose with compose with the
embedding v; : X; — P¢. Since U,, and X; are both affine schemes, we need only define a ring map:

fg : (C[{xg/$i}l¢i] — (C[-TOa e 7xn7$1‘_1]

Given our suggestive choice of notation, it should be no surprise that we define this map on generators
by:

N (2.2.1)

We see that any closed point of Uy, is of the form (zg,...,z;,..., 2,), where z; # 0, and that this is the
ideal:

I =(x0— 20, yTi— Ziy.o oy Tp — 2Zn) C(C[aco,...,xn,x;l]
under the identification U,, & Spec Clx, ..., 2, z; ']. We claim that:
h-ly= (%0 _ % In _Zn
@rim=(n-2 o=

Since the right hand side is clearly a maximal ideal, we clearly need only show that each generator lies
in (ff)’l(f). Now, note that:

& a/zi — z)z) =z 27t — 2z
however:

o e — ) + oz (a2 ) (@ — 2) =may - ay

1 -1 -1 -
—zix;  — 2z, 2%
-1

:xle — 2%

1

implying the claim. It follows that under the embedding v;, we have that:

Fil(20y -y 20)) = i 0 (€) (20, - 20)) = ¥i((20/21s -, 2ir e oo 20/ 20)
which is identified with [z0/z;,...,2i—1/2i, 1, Zix1/Zis- -, Zn] = [20,- -, 2a] € P™. So, on closed points f;
provides the correct map.

We now check that fi|UmiﬂUmj = fj|Umimij. Note, that f; = 1; 0o &;, where &; is the scheme morphism
U., — X, induced by the ring map defined by (2.5). It thus suffices to check that a), fi\Umimij has
image in U;;, and b) that ¢;; o fi|Uziﬁij = §j|UziﬂUzj' Indeed, if b) holds, then we have that:

Vi © @ij 0 &ilu,,nu., = V5 0 &jlus,nu., = Vi 0 &ilu,,nu., =5 0 &lu.,nus,
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We first check that:

§i(Uz, VUL, )45 = Uy, /2, C Xi = Spec C[{m1/x; }14]
Note that U,, N Uy, = Uyz; C Uy, is the distinguished open of U,, consisting of prime ideals p C
Clzo, -, Tn,2; ] such that x; ¢ p. We need to show then that z;/z; ¢ (f?)*l(p). Well, if z;/z; €
(5@)*1(;3), then & (z;/z;) = z; ~xi_1 € p, implying that z; € p, as xi_l is a unit. It follows that & has

7
image contained in Uy, N Uy;.

Now note that the ring map inducing the scheme morphism Uy, — Uj; is given by:

()0,., : ClHmi/wibizi, @i /)] — Clao, o wn, 2y 2]
0T — xpoxyt ifl#d,m=i
" vi-ayt ifl=im=j
while for Uy, ., — Uj; it is given by:
(fg)Uzin s Cl{m/xj b1y, 25 /2] — Clxg, ..., xn, 27 L, x;l}
/Ty — vyt i l#Ejm =
xj-xf ifl=j,m=1

and it now suffices to check that:
vy, 0 8L = Eluo,
and we do so on generators. Let a;/x; € C[{x1/x;}125, x;/2;] such that | # 4. Then:
& (x1/z5) = (w0/x:) - (/)
and:
(ff)UIm (x1/ai) - (wifaj) = w2t wiay = w0yt = E§|Uwizj (z1/25)
Now examine z;/x;, then:

v, © 05 (@ifa;) = v, (@if;) = i)

while:
& (wi/z)) = w2}t
Finally, for x;/z;, we have that:
(s, 0 0525 /2:) = (Do, (05/2:) =2 -2
while:
(v, (@y/m3) =25 a7t

It thus follows that:
hence:

ij © &ilv.,., = &l
and it follows that the scheme morphisms f; : ¢; o & glue together to form a map:

AP {0} — PR
which clearly sends closed points:

(20,5 2n) — [205 -+, 2n)
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Now, as promised we move forward with the Proj construction. Much like Spec, we will see that Proj
takes a commutative ring to a scheme, however, in this case, we will have that a) the ring must have a
grading, b) the scheme will not in general be affine, and ¢) Proj is not a functor. We will in fact find that:

P¢ = Proj Clzo, . . ., Ty]

We need the following definition:
Definition 2.2.1. A Z-graded ring is a direct sum of abelian groups :

A=A,
neL

equipped with a ring structure such that A; - A; C A;4; for all 4,5 € Z. We call elements of A;
homogenous elements of degree i. A homogenous ideal is an ideal generated by homogeneous
elements, and a graded ideal is an ideal such that

I=unAa,)

neE”Z

Clearly, we have that Ag C A is a subring, A; is an Ay module for all i, and A itself is and A, algebra.
We often make the mild sin of referring to a Z-graded ring as a graded ring, and so the reader should
always assume we mean a ring with with Z-graded structure unless state otherwise. Indeed there are
other notions of a graded ring over other abelian groups, and so we will clarify should the need arise. We
prove the following facts from commutative algebra:

Lemma 2.2.2. Let A be a graded ring, and I, J C A ideals of A. Then the following hold:
a) I is homogeneous if and only if it is graded
b) If I and J are homogenous, then IJ, I + J, INJ, and VT are homogenous.

¢) If I is homogenous, then I is prime if I # A and for any homogenous elements a,b € A, a-b € I
tmplies that a € I or b e I.

Proof. We start with a). Suppose that I is graded, then any i € I can be written as the finite sum:
1= Z a;
i

where each a; € INA,,. FEach a; is homogenous, so it follows that I is generated by homogenous elements.

Suppose that I is generated by homogenous elements, then any ¢ € I can be written as the finite sum:
1= Z a; - bl
i
where a; € A, and each b; € I N A;. Since A is graded, for each a; we can write:
a; = Z Aij
J
where each a;; € A;. It follows that:
1= Z Qi bi
4,7
It follows that a;;b; € A;y; for all ¢ and j, so we can rewrite 7 as the finite sum:

=Y
n i+j=n
then for each n set:

dn: Z aijbi

1+j=n
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It is then clear that d,, € I N A,, hence:
i=> dy
Since INA,)NINA,) =IN(A,NAy) =1IN{0} = {0} it thus follows that:

I=unA)

nez
Now let I and J be homogenous ideals of A. We see that:
I1J={(ij:1el,jeJ)
if St is the generating set of I, and Sy is the generating set of J, then we see that:
IJ=(S;-Sy)
where:
Sp-Sy={s-t:se€S,teS;}

Since all s and ¢ are homogenous, it follows that s-¢ is homogenous, hence I.J is generated by homogenous
elements, implying that IJ is homogenous.

The sum I + J is the ideal:
I+ J=(SruUsy)

so I 4+ J is indeed generated by homogenous elements, implying that I 4+ J is homogenous.

Now consider I N J; we have that by a):

I=@UnA,) and J=EHUINA)

nez nez

We claim that:

Puna)n@PUna,)=PUuninA,)

nez neZ neZ

Let i € @, c,(INJNA,), then:

i:E an

n

where a, € INJ N A,. It follows that a,, € I N A,, and a,, € NJ N A, for all n, hence i € ®HGZ(I N
An) N, cz(J N A,). Now suppose that i € @, ., (I N An) NP, (J N Ay), then:

1= Z an
where each a,, € I N A,, and:

i=Y bn
where b, € JN A,,. It follows that:

Zan—bn:O

and since the intersection A,NA,, = {0} we must have that a,, = b,, for all n. It follows that a,, € INJNA,
for all n, implying the claim.
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Now consider the radical of I:
VIi={acA:a" eI}

Let a € v/I, then since a” € I we can write:

where each b; € I N A,,. We can write a as:
a = Z a;
i

Then there exists a top degree element a.,, and it follows that a),, = bpsm € IN A, hence a,, € VINA,,.
Now a — a,, € V1, so we can apply the same argument to the next highest graded piece. It follows that
a; € VIN A; for all i, so:

Vi=@HVina,

and is thus homogenous by a).

To prove ¢) suppose I homogenous, not equal I, and suppose that for any homogenous elements
a, b€ A, a-be I implies that a € I or b € I. Now let a,b € A be arbitrary, and write:

a:Zai and b:Zbi

where a;,b; € A;. Suppose that a-b € I, but neither a nor b € I; we will prove the contrapositive. Since
a,b ¢ 1, and [ is graded, there is lowest degree m and [ such that a,,, b ¢ I, and a;,b; € I for all i <m
and j < [?°. Now note that the product is given by:

a-b= Z aibj
(2]
and we have the m + [th component of a - b is given by:
(@ O)myr= > aibj € 1N Apy

i+j=m-+l

For each such 7 and j not equal to m and I, we must either have that ¢ > m or j > [, but if ¢ > m or
Jj >l then a; € I or b; € I, hence all such a;b; € I. It follows that a,,b; € I, but neither a,, € I nor
by € I, so the claim follows by the contrapositive. O

Definition 2.2.2. Let A and B be rings, and ¢ : A — B a ring homomorphism. Then, ¢ is a graded
ring homomorphism if for all n € Z, ¢(A,) C B,. A graded ring homomorphism is a graded ring
isomorphism if it is graded, and an isomorphism as a ring homomorphism.

We note that homogenous ideals are precisely those that lead to graded quotients.

Lemma 2.2.3. Let A be a graded ring, and I a homogenous ideal, then:

AT =P r(A) =P An/ I

nez neZ

where T is the quotient map, and I, = A, N I,.

Proof. We note that since m : A — A/I is a surjective homomorphism that:

] = [z ] =S

n

251f this is lowest degree is zero, then the elements are homogenous and the contrapositive is immediate.
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clearly each [a,] € m(Ay), so any [a] can be written as a finite sum, where each element lies in w(Ay,).
To see that this admits a grading, we check that w(A4,,) N7 (A,,) = {0}. Let [a] € 7(A4,) N7 (A,,), then
we have that there is a,, € A,, and a,, € A,, such that:

[am] = [an]
which implies that there exists an ¢ € I such that:
Am +1 = ap

Since ¢ is graded we can write this as:
am + Z bj = ay
J
where b; € A; € I. It follows that:

an_am:§ bJ
J

but a, and a,, are homogenous, so b; = 0 for ¢ # m,n, and b,, = —a,, and b, = a,,. This then implies
that both a,, and a,, lie in I, hence [a] = 0. It follows that:

A/T =P r(An)

n€e”Z

Moreover, we see that [am] - [an] = [am - an] € T(Amin), so A/I is a graded ring.

We now define the following homomorphism of abelian groups:

On Ay — AJT
ap, — [ay]

clearly this is a surjection onto m(A,), and clearly ker ¢,, = I,, hence ¢,, descends to an isomorphism ,,:

U A /T, — 7(Ay)
[an]n — [an]

where the n subscript denotes taking the equivalence class in A,,/I,,. We take the direct sum of abelian

modules:
P 4./1.

nez
and equip with it the ring structure defined on homogenous elements by:
[an]n : [am]m = [am : an]m+n

and extend to linearly. This is clearly well defined as I is a graded ideal, hence we define the isomorphism:

VP AL — P r(An)

ne”Z nez

Z[an}n — an([an]n) = Z[an]

n n

Which is clearly a ring homomorphism as:
Pmtn([amlm - [an]n) = [am - an
while:
Ym([am]m) - Yn([an]n) = [am - an]

so it is clearly a graded isomorphism of rings. O
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We have a similar result for localization:

Lemma 2.2.4. Let A be a graded ring, and S be a multiplicatively closed subset of A containing only
homogenous elements. Then S™'A has the natural structure of a graded ring.

Proof. We define a grading on S~!A by first defining the homogenous elements of S™!A to be those of
the form:

H= {2 :s€ S ais homogenous}
s

Note that this indeed makes sense as S contains only homogenous elements. We then define the degree
of any a/s € H as dega — degs. We check that this well defined, suppose that:

then there is u € U such that:
u(at —bs) =0

We note that since a - ¢t and b - s are homogenous, we must have that deg(a - t) = dega + degt =
degb + deg s = deg(d - s), hence:

dega — degs = degb — degt
so the degree of an element is well defined. We define the set:
(S71A),, = {9 € H :deg(a/s)=mor Jue S,u-a= 0}
s

We claim that this is a subgroup of S™!'4; indeed 0 € (S71A),, as 0/s satisfies u -0 = 0 for all u € S.
Now, suppose suppose that a/s € (S~ A),,, then deg(—a/s) = m, and (a/s) + (—a/s) = 0, so (S7L1A),,
contains inverses. Now, let a/s and b/t in (S~1A),,, then:

a b at+bs
-+

st
so:
deg <at ; bs) = deg(at + bs) — deg(st)
Note that:
deg(st) = deg(s) + deg(t)
while:
deg(at) = deg(a) + deg(t) and deg(bs) = deg(b) + deg(s)

Since:

dega — degs = degb — degt

it follows that deg(at) = deg(bs), hence:

t+b
deg (a ;; s) =dega + degt —degs — degt = dega — degs =m

so (S71A),, is closed under addition. Since the degree of an element is well defined, it follows by the
construction of (S71A),, that for m # n, we have that (S71A),, N (S71A4), = {0}. Now finally, let
a/s € ST1A, then a can be written as the sum:

a:Eai
%
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where A; € a; for each i. It follows that:

each element is then homogenous of degree i — deg s. It follows that any element can be written as sum
of homogenous elements, hence:

STA=EP(S A,
nez
We now need only check that (S71A),,-(S71A),, C (S7 A)ymin. Leta/s € (ST1A),, and b/t € (STLA),,
then we see that:

b
deg <Z) = deg(ab) — deg(st) = dega + degb — deg s — degt = deg(a/s) + deg(b/t) = m+n
s

implying the claim. O

We say that a Z-graded ring A is ZZ° graded if for all n < 0 we have A,, = {0}. Going forward, we
assume that all rings are Z=9 graded.

Definition 2.2.3. We fix a base ring B, and say that a graded ring A is graded over B if 4y = B.
Moreover, the subset:
A =P a

i>0
is a prime ideal called the irrelevant ideal. If the irrelevant ideal is finitely generated, then we say that

A is a finitely graded ring over B. Finally, if A is generated by A; as a B-algebra, we say that A is
generated in degree 1.

We now begin the Proj construction:
Definition 2.2.4. Let A be a graded ring, then as a set Proj A is defined by:

Proj A = {p € Spec A : p is homogenous and A, ¢ p}

i.e. Proj A are the set of all homogenous prime ideals which do not contain the irrelevant ideal.

If f € A is homogenous, we denote by Ay the localization of A by the multiplicatively closed subset
generated by f, equipped with the natural Z grading given by Lemma 2.2.4. We define (Ay)o to be the
degree zero elements of Ay.

Proposition 2.2.1. Let f € AL be homogenous, then there is a bijection between the prime ideals of
(Af)o, the homogenous prime ideals of Ay, and the homogenous prime ideals of A which do not contain

f.

Proof. First note that there is a bijection between the prime ideals of Ay, and the prime ideals of A which
does not contain f. Clearly, if p C A is homogenous, then the corresponding ideal p; is homogenous in Ay,
when equipped with the natural Z grading from Lemma 2.2.4. Now note that if p C A is homogenous,
then p is generated by homogenous elements, and if m : A — Ay, then 7—!(p) is the prime ideal of A
corresponding to p. Now suppose that 77 1(p) is not generated by homogenous elements, then if {a;};
are the generators of m~!(p), we have that {a;/1}; are the generators of p, implying p is not generated
generated by homogenous elements, so by the contrapositive, we have that 7=1(p) is homogeneous. It
follows that the bijection between primes not containing f, and primes of Af preserves homogenous
primes, implying the claim.

Now we have a natural inclusion homomorphism of rings ¢ : (Af)o < Ay, so any homogenous prime
of Ay pulls back to a prime ideal of (Af)y. Given a prime py € (Ay)o, then we set ¢(po) = /PoAys,
where pgA; is the the in Ay generated by pg as a subset of Af. Since poAy is generated by degree zero

only prove this for homogenous elements of |/pgAys. Let a and b be homogenous elements of degree k

and [, such that a-b € \/poAy, so there must exist some r > 0 such that (a-b)" € poAs by the definition
of the radical. Now, (a-b)" has degree (k + {)r, so let j = deg f, then:

a-b jT
(f(H?)T € (PoAy)o = po
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It follows that since po is prime, either a/”/f*" € po, or H'"/f*" € po, hence either a/” € poAy, or
V" € poAys. Again by the definition of the radical we have that either a € \/poAy, or b € \/poAy, so

\/M is indeed prime.

Now if we have po € (Af)o, then :7*(1/PoAs) = (PoAf)o = po, so one direction of the bijection is
immediate. Now let p C A¢ be a homogenous prime ideal, we want to show that:

p=1/t" p)As

Note that t=1(p) = (p)o, i.e. the degree zero elements of p. Since both primes are homogenous, it suffices
to check equality on homogenous elements. Let a € p have degree k, then o’ /f* € (p)o, so a? € (p)oAy,

hence a € \/t=!(p)Ayr. Now suppose that a € \/¢=!(p)Ay, then there exists some r such that a” € (p)oAy,
but this implies that a” € p, as (p)oAs C p, Since p is prime it follows that a € p, implying the second

direction of the bijection. O

So to sum up the result of the last proposition, which is an analogue of Proposition 1.1.3 minus the
topological information, we have that a homogenous prime ideal which does not contain f induces a
unique homogenous prime ideal of Ay, which then induces induces a unique prime ideal of the subring
(Af)o. Our next step is to put a topology on Proj A.

Definition 2.2.5. Let T be a subset of homogenous elements then the projective vanishing set of
T, denoted V(T') is defined by:

V(T)={p €ProjA:T C p}
Similarly, if f is a homogenous element of positive degree, and I C A is a homogenous ideal, we set:

V(f):=V({(f)) ={peProjA: fep} and V(I)={peProjA:ICp}

This leads us to our next lemma, which follows a very similar argument to Proposition 1.1.1:

Lemma 2.2.5. Let A be a graded ring, then defining the closed sets of Proj A to be V(I) for all homoge-
nous ideals defines a topology on Proj A

Proof. We first see that zero element is contained in (A)4 for every d, so 0 has any degree we wish. It
follows that since 0 C p for all homogenous primes, that:

V(0) = Proj A
so Proj A is closed. We also have that that:

as no p € Proj A contains A, so the empty set is closed.

Now let I and J be homogenous prime ideals, then we want to show that:
VHUV(J)=V({InJ)

Let p e V(II)UV(J), then I Cpor J Cp,if I Cp,then INJ C I C p, and similarly for J, hence
peVUINJ). IfpeVUINJ), then INJ Cp. Let r € I-J, then r =i -j for some ¢ € I and some j € J.
It follows that r€ INJ,soI-J CINJ. , hence I-J C p. Now suppose that I ¢ p, then there exists
an ¢ € I such that ¢ ¢ p, however since I - J C p, we have that for all j € J, i-j € p. Since p is prime it
follows that J C p, and if J ¢ p, the same argument demonstrates I C p. Note that if neither I C p, nor
J C p, then p can’t be prime, as there exists ¢ € I and j € J such that i,5 ¢ p, but i-j € p. It follows
that I C p or J C p, hence p € V(I) UV(J), implying the second direction.

Now let {I,} be an arbitrary family of homogenous ideals. We claim that:

v (ze)

where ) I, is the smallest ideal containing all I,. Suppose that p € (), V(I,), then we have that I, C p
for all a. Now since any i € ) I, can be written as the finite sum 2?21 r; where each r; € I, C p,
we have that ¢ € p, hence > I, C p,sop € V(3 I,). Now suppose that p € V(3 __ I,), then since
I, C Y, I, we have that I, C p for all o, hence p € (), V(Ia). O
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As before call this topology on Proj A the Zariski topology. Note that Lemma 1.1.1 holds in the sense
that for any homogenous ideals I and J, the following hold:

a) V(I) = V(VT)

b) JCcI=V(J)DV{)

¢) VII) cV(J) <= VI>VJ
We define a basis of open sets similarly, though impose more restrictions on what our basic opens can be:
Definition 2.2.6. Let A be a graded ring, and f a homogenous element of positive degree, then we
define the (projective) distinguished open to be:

Up =V(f)°

Lemma 2.2.6. The set of (projective) distinguished opens form a basis for the Zariski topology on Proj A.

Proof. Let U C Proj A be open, then we have that for some homogenous ideal I C A:

U=V()°
Note that:
=% ()
iel
hence:

U=v (Z <z’>>c

iel

(o)

Uvar

i€l

Now we can split this into the following union:
U= Juu Vi)
icl j€lo

where I denotes the elements of I with positive degree, and Iy are the degree zero elements of positive
degree. Let {fi} be the generators of the irrelevant ideal A, , then:

0=V(AL)=(\V(fe) = ProjA = Uy,
k k

We claim that if j € Iy, then:
U; = JUjs
E

Let p € U;, then j ¢ p; since Ay ¢ p, we must have that there exists some k such that f ¢ p. It follows
that jfi ¢ p, hence p € |J, Ujs,. Now suppose that p € |JUjy,, then for some k we have that jf ¢ p,
hence j ¢ p, and fi ¢ p, so p € U;. It follows that:

v=JuuJUUisn

Sn j€lo k
so the distinguished opens generate the Zariski topology on Proj A. O
It should be no surprise that we are about to prove a similar result to Proposition 1.1.3, and from

there we will use the projective distinguished opens to put the structure of a scheme on Proj A for any
graded ring A.
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Proposition 2.2.2. Let A be a graded ring, and f a homogenous element of positive degree. Then
Uy C Proj A is homeomorphic to Spec(Ay)o.

Proof. Recall that Uy C Proj A is defined by V(f)°, hence:

={peProjA: f ¢p}

From l’m])oaitiun 2.2.1 we have a bijection Uy <> homogenous primes of Ay <> Spec(Ay)o, given by
F:pwpre o Y(ps), where ¢ : (Af)o — Ay is the inclusion map, and py is the prime ideal generated
by the image of p under the localization map. In other words, p; = n(p), where 7 is as defined in Let
V(I) C Spec(Ay)o be a closed subset, for some radical ideal I C (Ay)o, then we have that:

FHV(ID) ={p e Uy : v H(ps) € V(I)}
={peUs: T (pp)}

We first claim that I C ¢=!(ps) if and only if ¢(I) C ps. Suppose that I C .7!(ps), then i € I implies
that i € .= !(py). By definition, it follows that ¢(i) € pys, hence +(I) C py. Now suppose that (1) C py,
since ¢ is injective, we thus have that .=!(I) = I, hence I C .7 '(py). It follows that:

F=Y V(1)) ={p € Uy : (I) C py}

Note that since I C (Af)g, we have that (1) consists of degree zero elements of Ay, and is thus homoge-
nous. We see that if m: A — Ay is the localization map, then 7= (ps) = p, hence:

FZH VD) ={p € Uy s 7= (u(D)) C p} = Uy NV (™ (e(1)))

which is a closed in the subspace topology on Uy hence F is continuous. We note that f ¢ m—1(:(I)), as
this would imply that f/1 € I which can’t be true as I C (Ay)o. It follows that:

FHV(I)) =V(n~H(u(I))) C Uy

Now take V' C Uy be a closed subset. We must have that V' = V(I) N U for some homogenous ideal I.
Moreover, if f € I, then V(I) N Uy = ), hence we actually have that V = V(I) C Uy, and f ¢ I. Now
note that by Proposition 2.2.1:

F(V(I)) ={q € Spec(Ay)o : I C ﬂ]l(\/qT)}
={q € Spec(Ay)o : (1) C \/qAs}
={q € Spec(Ay)o : (ﬂ'f( )) C a}
=V H(mr(1)) C SpeC(Af)

which is closed. It follows that F' is a continuous closed bijection, and hence a homeomorphism as

desired. O
Our goal is to now equip Proj A with the structure of a scheme via Proposition 1.2.11. Note that we
could also glue the affine schemes Spec(Ay)o together via Theorem 2.1.1 and get the same result, but this

would ‘overkill’, given that we have already in a sense glued the topological spaces Spec(Ay)o together
by our construction of the topology on Proj A. We could also define the structure sheaf to be the sheaf
on a base given by Us + Ogpec(4,),, and show that this truly defines a sheaf on the base of distinguished
opens, but as we are about to see thls equivalent description would be much more involved. We need the
following lemma:

Lemma 2.2.7. Let A be a graded ring, and f,g € A homogenous elements of positive degree. Then:

(Afg)o = ((Ap)o)n

where h = gd°8 1/ fde 9 In particular, with h=' = fd°89 /gde8 f we have that:

((Af)o)n = ((Ag)o)n—1

I
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Proof. We first examine the map:

¢:Af—)Afg

a a-g*

7= (f)

and note that if a/f* € (Af)o, then clearly ¥(a/f*) € (Afy)o, so this descends to a morphism 1 :
(Af)o — (Afg)o. We now see that

gdegf . gdegg

v gy
which has an inverse in (Ay4)o given by:

fdeg g+deg f
(fg)ieet

so there exists a unique map:

0o : ((Af)o)n — (Arglo

o . ag fdcwdcgf)’“
7T Gy ((fg)degf

We first claim this map injective. Suppose that (a/f!) - h=* s 0, then we have that:

a- gl . fkdegg+kdegf

(fg)ithdesf =0

implying there exists a K such that:
(f9)<(a-g' - fricsarkdest) =g
We want to then show that there exists an L such that:

a-gldess

frLdegf =0

meaning that we really want to show there exists an L’ such that:
fL/ ] (angegf) =0
Well set L =K +1,and L' = K + kdegg + kdeg f, then:

fK+kdegg+kdegf(a.gK+l) — (fg)K(a~gl . fkdegg+kdegf) -0

so a/f!-h™* =0 as desired, and the map is injective. Now let a/(fg)* € (Ay,)o, then we see that:

; ghdeg f—kg i a - ghdesf—kth+kdegg  fhdeg f+hdegg
’ (f’“i““ | ) L VL
agk deg f+kdegyg . fk deg f+kdegg
(fg)kdegg+kdegf+k
a
(fg)*

so the map is also surjective, and thus an isomorphism. Clearly the second claim follows from the first. [

Theorem 2.2.1. There exists a unique (up to unique isomorphism) sheaf of rings Opoja on Proj A
which makes Proj A into a scheme, such that (Ug, Opyoj alu,) = (Spec Af, Ospec(a;),) for any homogenous
element f of positive degree.
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Proof. Let A}_}_‘)m be the set of homogenous elements of A of positive degree, and consider the cover of
Proj A by {Uf}feAs_om. For each Uy, let 9 : Spec(Af)g — Uy be the aforementioned homeomorphism,

and set Ff 1= 1. Ogpec(a;),- We need to define sheaf isomorphisms ¢y, : F¢|v,nv, = F4lu,nu, which
satisfy ¢rg = @19 © @ on triple overlaps Uy N U; N U,. First note that that:

UrNUg={p€ProjA: f,g¢p}
Since p is prime, we have that f,g ¢ p < f-g ¢ p, hence:
UpNUy = Ugg = Spec(Ayg)o
Now by Lemma 2.2.7 and Corollary 1.4.3, we have that as affine schemes:
Un = Spec((A1)o)n = Spec(Afg)o = Spec((A,)o)n1 = Uy

where h = gdeef/fdeeg p=1 = fdegg/gdeeS and U, C Spec(Af)o, Up-1 C Spec(Ay)o are the distin-
guished open sets.

Moreover, we have Uy, C Uy, so we can examine the open set @[Jj?l(Ufg) C Spec(Ay)o. We claim that
this is equal to Uj, C Spec(Ajf)o; indeed, we have that if q € w;l(Ufg), then q = ¢ (py) for some p € Uy,.

Since f - g ¢ p, we have that g ¢ py, hence h ¢ py, but h € (Af)o, hence h ¢ = *(py) so q € Up. Now
suppose that q € Uy, we want to show that ¢¢(q) € Upy; well clearly 1¢(q) € Uy, and g8/ /1 ¢ | /q0 4y,

hence g3°8 7 ¢ 7=1(1/(q0)As) = ¥;(q), so g & ¢(q), implying that 1¢(q) € Uy,. Respectively, we have
that ¢, ' (Usg) = Up-1 C Spec(Ag)o-

Now note since the isomorphism
(Uha ﬁSpec(Af)o |Uh,) = (Uh_17 ﬁSPeC(Ag)U |Uh*1 )

is induced by the by the unique ring isomorphisms from Lemma 2.2.7, that the homeomorphism U, —
U},-1 must be given by the restriction w;l ot¢|u, . In particular, we have the following sheaf isomorphism:

ﬁSpec(Ag)oth_1 — (wg_l © wfth)*ﬁSpec(Af)g|Uh

Since 14 is a homeomorphism, we thus obtain the following isomorphism of sheaves:

(Vglus)+(Ospec(a,yolv, 1) = (Ulusy )« (Ospeciasyolun,)

By noting that

(w9|U.fg)*(ﬁSPCC(Ag)0|Uh*1) = (wg*ﬁSPCC(Ag)OMUfg = yg|Ufg

and similarly for the ¢, we have the desired isomorphisms ¢g.

Now let f,g,l € A}fm, then we have the following unique ring isomorphisms:

(Afgl)O = ((Af)o)(gl)degf/fdeggl = ((AZ)O)(fg)degl/ldegfg = ((Ag)o)(fl)degg/fdegfl

If we denote the ring isomorphisms by Bf;, and 34, then by uniqueness we have that 3i4 o S5 = Byg.
Since these ring isomorphisms are what induce the sheaf isomorphisms ¢4, @74, ¢ 71, it is then clear that
on Uy, NU; NUy we have that ¢yg = ¢1g 0 ¢y, this gluing defines a unique (up to unique isomorphism)
sheaf of rings on Proj A.

All that remains to show is that Proj A is a scheme however this is now clear, as for any homogenous
element of postive degree f, we have a homeomorphism ¢ : Spec(Af)y — Uy, and a sheaf morphism:

ﬁProjAlUf = q/}f*ﬁSpec(Af)o — U]f* ﬁSpec(Af)o

given by the identity map, so every point in « has an open neighborhood isomorphic to an affine scheme.
O

We now recall that the construction in Example 2.2.1 is valid for any commutative ring A, hence we
have the following proposition:
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Proposition 2.2.3. Let A be a commutative ring, and consider the polynomial ring Alxg, ..., T,] with
the standard grading induced by degx; = 1, then:

W = Proj Alzo, ..., xy)
where P is the scheme constructed as in Frample 2.2.1.
A

Proof. We first claim the distinguished opens U,, C Proj A[zo,...,z,] cover ProjAlxo,...,z,]. Let
p € Proj A, then we have that p is a homogenous prime ideal which does not contain the trivial idea,
then p can not be of the form:

p={(xoy...,Tn)

or contain such an ideal. It follows that at least one z; € Az, ..., x,] does not lie in p, hence we have
that:

n
Proj Alzg,...,z,]) = U U,
i=0
We now note that for each ¢ we have that as schemes:
Uz, = Spec(Alxo, - -, Tz )o

and that the ring homomorphism:

¢i : (Alzo, -+ @plo,)o — A[{@k/@i iz
T [T5 > Ty [T

is an isomorphism. We thus have scheme isomorphisms:
Spec Al{zk /i }izi) — Uz, C ProjAlzo,. .., 4]

Now by noting we have that P} is given by gluing the schemes X; = Spec A[{x}/x;}rx;] together as in
Example 2.2.1, and via the open embeddings 1; : X; — P’, we have scheme isomorphisms:

fi :9(X); C P — Uy, C ProjAlxo, ...,z
which trivially agree on overlaps, so we have a scheme isomorphism:
f: P4 — ProjAlxo, ..., T,
as desired. O

With the above proposition, we now define projective schemes precisely:

Definition 2.2.7. A scheme X is a projective scheme over B if it is of the form Proj A for some graded
ring A with Ay = B, and A finitely generated as a B-algebra. In particular, if A is any commutative
ring, then the projective scheme P7; is defined by:

P% = Proj(Alxo, - .., Tn))

Now let k be any algebraically closed field, and recall the argument that the closed points of P} are
in bijection with standard projective space over k. We wish to identify the closed points [z, .. ., z,] with
homogenous prime ideals of k[zg,...,z,]. Note that at least one of these z; must not be zero, so we can
rewrite this point as:

[Zo/Zi,...,l,...,Zn/Zi} S 1/)(X1)

which then corresponds to the maximal ideal:

X Zq T X4 Zq

po = < — —,...,¥,...,ﬁ — Z”> € Speck[{z;/x; }14i]
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which is the the same ideal in Spec(k[zo,...,%n]s;)o- Under the bijection between prime ideals of
(k[zo, - -, %n)s; )o and homogenous prime ideals missing the trivial ideal of k[zg,...,x,], we then have
that this corresponds to m~*(y/po Ay, ) where A = k[zo, ..., x,]. Since z; is invertible in A,,, we see that:

~

PoAs, = (To2i — Ti20, -y iy ooy T2 — Tizn) C Ay,
which is prime and thus radical. It follows that:

w_l(\/poAri) = (T0%i — TiZ20y -y Biy ooy Tn2i — Tizn) C K[To, ..., Ty)

Now note that for any k and [ we have that:
zpz — mzg = (T2 — xizk) - (21/21) — (zi — xi21) - (21/ 20)

so we have that:

7V PoAe,) = (wizj — 220 < i,j < n)

Therefore the correspondence between closed points and homogenous prime ideals of [z, . .., ] is given
by:

(20, .-y 2n] ¢ (Tizj — ;20 < 0,5 < n)

Example 2.2.2. Let A be any commutative ring, we will examine Proj A[z] with two different gradings
on Alz]. First, let Ax] have the standard grading, and then note that U, = Proj Alz]. However,
U, = Spec(Alx];)o, and we see that:

(Alz]2)o = (Alz, 2™ ])o = A

so Proj A[z] = Spec A. Note that when A = C, then we have that this implies that P2 = {(0)}, i.e. the
singleton set. This matches with the fact that C ~ {0}/C* is just a point.

Now let A[z] have the trivial grading so that every element is homogenous and of degree 0, we wish
to describe Proj A[z], however this is easy. We see that

Proj Alx] = {p € Spec A[x] : p is homogenous and (A[z])+ ¢ p}

is empty as (Alz = (0) and every ideal contains 0. It follows that Proj A[z] is the empty scheme.
pty as (Az])4 = (0) y j pty

Example 2.2.3. Let X = ProjClz,y, 2], where C[z,y, z] is equipped with the grading degz = 0,
degy = degz = 1, and all elements of C are degree zero. We know that in the standard grading case
the closed points IP’(QC are precisely the points of CP?, we now wish to see how this changes with this new
grading. We claim that X = U, UU,, where U, and U, are the projective distinguished open sets. Let
p € X, then p is a homogenous prime ideal which does not contain the trivial ideal. In particular, either
y or x can’t lie in p, so p € U, UU,. We have that:

U, = Spec(Clz, y, 2]y)o = Spec Clz, z/y] and U, = Spec(Clz,y, 2], )0 = Spec C|z, y/ 2]

The closed points of each are of the form (z — wy,z/y — wa) and (x — wi,y/z — wa), and for a prime p
to be closed we necessitate that ¢~*(p) in both U, and U,. We have that the gluing isomorphism along
U.NU, = U,y = Speclz,y/z/,z/y] takes the closed point (z — w1, z/y — ws) to (x —w1,y/z — 1/wy).
We define a set map

P U []IUy| — C x P!
via the disjoint union set map induced by the maps:
(x — w1, 2/y — wa) — (w1, [wa, 1)) and (x —wy,y/z — w1y — (w1, [1,ws))
Now this map is clearly surjective, and factors through the quotient condition, as if (x — w1, z/y — wa) ~
(x —w1,y/z — v), then we have that v = 1/ws, so (x — w — 1,y/z — v) maps to (wi, [1, 1/ws]) = (w1, [w2,1]).

It follows there is induced map F : | X| — C x P!, which is then also clearly injective. Via the identification
of P! with C U {oo} we see that the closed points of X are in bijection with C x (CU {oc})
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Example 2.2.4. Let V be a vector space over a field k°°, then we define:
P(V) := Proj(Sym V™)
where Sym V* is the symmetric algebra of the dual space to V. In particular:
SymV*=T(V")/I=(keV' eV '@,V e ---)/I
where [ is the homogenous ideal:
IT={(w Quws —wa Q@uwp :w; € V)

Note that with V finite dimensional, after fixing a basis {e;}™ ;, and a corresponding dual basis {e?}? ;,
we obtain an isomorphism

SymV* = kle!, ... e"] 2 k[z1,...,T,)
hence:
P(V) =Pyt

We now suppose k = k, and claim that any closed point of P(V') corresponds to a one dimensional linear
subspace of [ C V. Indeed, let [ C V be a one dimensional linear subspace, and define:

p=(weV:w(l)={0})

i.e. we take the homogenous ideal generated by degree 1 elements which vanish on all of . We claim that
p; is prime; Fix a v € [, and then let uq, ..., u,_1 be a set of vectors such that {uq,...,u,—1,v} is a basis.
If welet {p1,. .., n—1,v} be a dual basis basis such that p;(u;) = d;5, pi(v) = 0, then p; = (u1,. .., n—1)
which is manifestly prime.

We show that V(p;) = {p;}. Indeed, suppose that there was a q € Proj(Sym V*) such that p; C q.
In particular, we have that V* Np; C q N V*, but in the process of showing that p; was prime, we
showed that p; N V* is an n — 1 dimensional vector space, hence N V* = p; N V* or V*. In the latter
case q ¢ Proj(SymV*), and in the former, we claim this implies that q = p;. Suppose there was some
homogenous w € q of degree n, that was not in p;. Then, (u1,...,pn—1,w) C ¢; since w ¢ p;, we can
write:

w=p+oa-v

where p € p;. It follows that « - v € q, so q is not prime, hence we must have q = p;. It follows that p; is
maximal amongst prime ideals in Proj(Sym V*), and is thus a closed point.

Now suppose that p is a closed point of P(V). We first note that since k is algebraically closed,
pNV* £ {0}. Indeed, after choosing a basis, we can identify Sym V* with k[z1, ..., z,], and so pnV* = {0}
implies that p = (f1,..., fim) where each f; is homogenous of degree greater than 1. Since p is closed,
and thus maximal amongst homogenous prime ideals not containing the irrelevant ideal, we have that by
Proposition 2.2.1, the corresponding ideal in k[xy/x;, ..., z,/x;] for some i is maximal.”” The generating
set of this ideal must contain a polynomial with leading term of degree greater than 1 as other wise z;
divides each f;. However, this then implies the existence of a maximal ideal of k[zy/;, ..., 2, /2;] which
is not generated by linear factors, which contradicts Hilbert’s Nullstellensatz. It follows that pnV™* #£ {0},
and thus must have dimension n—1 as otherwise it is not maximal. We send pNV™ to the linear subspace:

lb={veV:iww)=0,YwepnV*}

This is clearly one dimensional, and in particular the maps [ + p;, and p — [, are clear inverse of each
other. We thus have the following obvious bijections:

[P(V)| +— {one dimensional linear subspaces of V'}

We at times denote one dimensional linear subspaces by equivalence classes [v], such that [v] = [w] if
and only if there exists a scalar A\ € k* satisfying v = A\w. Note that if k # k, then not every maximal
homogenous prime ideal corresponds to a linear subspace; in particular, we have that if V = R2, then
(2 + y?) is such an ideal.

260r more generally a free module over a ring A.
27The value 7 is clearly dependent on which open set Ug,; p lives in.
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Example 2.2.5. Fix k = k; we wish to construct a closed subscheme of Gy (d,n) C P(W) for some
k-linear vector space W, such that the closed points |Gi(d,n)|, can be identified with d dimensional
linear subspaces of V = k". In other words, we wish to define a scheme which is the algebraic geometry
analogue of the Grassmannian from differential geometry.

We claim that the correct W is given by W = A%V, then:
P(W) = Proj Sym(A%V*)
We define D C A4V as:
D={vyA-ANvg €NV :v; €V}

Note that we are not taking this as a linear subspace or span, we are simply considering all elements in
AV which can be written in this form, i.e. alternating tensors which are simple or pure. We define an
ideal via:

I = {w e Sym(A V™) : w(D) = {0}}

and immediately note that I N A?V* = 0. We need to check that this ideal is homogenous; let w € I, and
write:

wzéwi
i

where each w; has degree i. It suffices to check that if w € I, then w; € T for each I. Since w(D) = 0, we
see that for any A\ € k* that w(A- D) = 0. It follows that for all v; A --- A vg, and all A we have that:

w()\vl/\~~~/\vd):Z)\iwi(le--~/\vd):0

Fixing v A -+ Avg, and writing a; = w;(v1 A -+ Avg), we thus have a sequence of elements (ay,...,an)
for some m, such that:

> Xa; =0
for all non zero A € k. In particular, this means that the polynomial p(z) € k[z| given by:

p(z) = Z rla;

is the zero polynomial, hence each a; = 0°°. . Since this hold for all v; A - - - vg, it follows that each w; is
identically zero on D, and thus [ is generated by homogenous elements.

We claim that Gi(d,n) = V(I) is the desired subscheme. Given a d dimensional linear subspace W C
V', we choose a basis {vy,...,v4} and send it to [v; A--- Avg] € P(AYV). Note that [vy A--- Avg] € V(I),
as every element in I vanishes on [ = span{vy A -+ A vg}, hence I C p;. Note that this independent of
the chosen basis, as another basis {wy, ..., w,}, yields an automorphism g : W — W, such that

vy A Avg =det(g) - wyp A Awg

which both determine the same [ € [P(A4V)|. Now let p be a closed point of P(A?V), and suppose that
p € V(I). Then we can uniquely identify p with a linear subspace of A%V, and since p € V(I), this
linear subspace must be spanned by some v1 A - -+ A vy for some v; € V. We then send p to the vector
subspace spanned by vy, ...,vq. These operations are inverses of one another and thus we have obtained
a bijection:

|Gk (d,n)| +— {d dimensional linear subspaces of V'}

28Note, that this argument only works if k has infinitely many elements, as then the ideal mxek (x — A) = (0). We will
fix this later, when we give a better definition of the Grassmanian.
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2.3 Fibre Products

Just as the coproduct does not generally exist in the category of rings, and is replaced with the more
general notion of the tensor product of rings (which becomes the coproduct in the category of A algebras),
we have a similar situation regarding direct products in the category of schemes. In particular, the direct
product does not generally exist in the category of schemes, but is instead replaced with the more general
notion of a fibre product.

Definition 2.3.1. Let X, Y and Z be objects in an arbitrary category, with morphisms f: X — Z and
g:Y — Z. The fibre product of X and Y over Z is the triplet (X xz Y,nx,ny) such that the
following hold:

i) X xzY is an object in the aforementioned category.
it) mx and my are morphisms X Xz Y to X and Y respectively.

i17) If @ is any other object with morphisms px : Q@ — X and py : @ — Y such that fopx = gomy
then there exists a unique morphism ¢ : Q — X Xz Y such that the following diagram commutes:

We call X xz Y the fibre products and the morphisms 7x and 7y projection maps.=

Note that this is the diagram defining a tensor product in the category of rings with the arrows
reversed. Before we prove that fiber products of schemes exist, we will first prove some very general
properties of fibre products. We will state most of our results in terms of schemes, but we alert the
reader to the fact that the following results will hold in any category where fibre products exist. For now
suppose we have already proven that fibre products exist in the category of schemes. First we employ
the following definition:

Definition 2.3.2. Let Z be a scheme; a pair (X, f) where X is a scheme, and f : X — Z is a morphism of

schemes is called scheme over Z or a Z-scheme. If (X, f) and (Y, g) are Z schemes, then a morphism
of Z schemes F': X — Y is a morphism of schemes such that f =go F.

One easily verifies the that collection of all Z schemes and their morphisms is a category which
contains fibered products (assuming fibered products exist in the category of schemes.).

Lemma 2.3.1. Let (X, f), (Y,q), (W,h) be Z schemes, then there are canonical isomorphisms:
XxzY=2Y xzX and (XxzY)xzW=ZXxz (Y xz W)

Proof. For notation purposes, we will denote projection maps on the left hand side of the first isomorphism
with a superscript 1, and those on the right hand side with a superscript 2. Now note that we trivially have
that the projection maps satisfy fon’ = goni., so there exists unique morphisms ¢ : X xzY — Y xz X
and ¢ : Y Xz X — X xz Y. We thus have a morphism ¢po) : X xzY — X Xz Y which makes the
following diagram commute:

XXZY

\\ 1

h XxZY—ﬂ%/HY
T ‘ ‘
ﬂg( g
l l
X f—— Z
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However, the identity map also clearly satisfies this, so by uniqueness ¢ o ¢ = Id. A similar argument
shows that 1) o ¢ = Id, hence ¥ (and ¢) is a unique isomorphism.

Now note that (X Xz Y) xz W comes equipped with morphisms to (X xz Y) and W, given by
W}(XZY and 7. We thus have a morphism from (X xzY) xz W to X and Y given by mx omxx ,y and
Ty 0T xx,y. We see that X Xz Y is a Z scheme when equipped with the morphism forx (equivalently
g o Ty ), so we have morphisms:

Ty 0Txx,y : (X XzY)xz W —Y
and:
mw i (X Xz Y)xz W — W
which satisfy:

go(my omxx,y) =(fomx)omxx,y

=homw

so we have a unique morphism £ : (X xzY) Xz W =Y xz W. Now we Y xz W is a Z scheme when
equipped with the morphism g o my (or equivalently h o wy ). We see that:

(gomy)o& =gomy oTxx,y

=fomx omxx,y
so there is a unique morphism:
V(X xzY)xzg W — X xz (Y xz W)
and the same argument gives a unique morphism:
P XXz YV xzW)— (X xzY)xz W

which make similar diagrams commute. We see that the composition ¢ o ¢ makes the following diagram
commute:
(X Xz Y) Xz w \
oy

T~

(XXZY>XZw7‘“'W w

TXXzY h

| l

X xzY forx —— Z

™w

so ¢potp = Id. The same argument then shows that ¢o¢ = Id, so ¢ and v are isomorphisms as desired. [

We also have the following analogue of the fact that for commutative rings A @ g B = A:

Lemma 2.3.2. Let X be a Z-scheme, then there is a natural isomorphism X Xz Z = X.

Proof. We will show that (X,Idx, f) satisfies the universal property of X xz Z. Indeed, note that Z is
naturally a Z-scheme when equipped with the identity morphism Idz : Z — Z. Trivially, the following
diagram commutes:

X —Fr—2Z

Idx Idz

l l

X —fr—7
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Suppose @ is another scheme with morphisms px : Q@ — X and pz : Q@ — Z, such that fopx =Idzopz,
then the following diagram commutes:

Pz

S X —f— 2
Id‘x Id‘z
| |
X —Fr—127

We see that putting px : Q@ — X in the empty diagonal makes the diagram commute, and that any other
morphism ¢ : Q — X must satisfy Idx o ¢ = px, so ¢ = px and the morphism is unique. It follows that
X satisfies the universal property of the fibre product and is thus naturally isomorphic to X xz Z. [

We have the following extension of the previous results:

Lemma 2.3.3. Let X and Y be Z-schemes, and S a'Y schemes viewed as an Z scheme via the compo-
sition S —Y — Z, then there is a canonical isomorphism of Z schemes:
(X xzY)xy SEX xz 8

where (X Xz Y) is viewed as Y scheme via the second projection my .

Proof. Let f : X - Z,g:Y — Z, and h : S — Y be the various morphisms that make X and Y
Z-schemes, and S an Y scheme. We first know that by Lemma 2.3.1 and Lemma 2.3.2, as Y schemes
S 2Y xy S; we claim these are also isomorphic as Z-schemes. There is then a unique isomorphism
which makes the following diagram commute:

S\
\ Idg
d>\
Y xy S s —> 8 *
h ‘ ‘
TY h
l l
Y Idy — Y

Now Y Xy S'is a Z scheme in one of two ways, via gony, or via gohowg, however, horg = Idy oy = 7y,
so these are actually equivalent Z-scheme structures and Y Xy Z has a natural Z-scheme structure
independent of choice. We thus see that:

gomyodp=goh
so ¢ is a Z scheme isomorphism as well. We now claim that:
X xXz52X xz (Y xy S)
We have a morphism ¢pong : X xz 5 =Y xy S and a morphism 7x : X Xz S — X which satisfy:

gomyogpomg =gomy = fomx
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so there is a unique morphism v which makes the following diagram commute:

XXZS

\\ gors

\\

X xz (Y xyS) —myxys > Y xy S

TX gomy
| |
X ! Z

In a similar vein, we have a Z scheme isomorphism ¢~! : Y xy S — Y, which by the same argument
induces a unique Z-scheme morphism £ : X xz (Y xy S) = X Xz S which makes the following diagram

commute:
X Xz (Y Xy S)

\g\ﬂsOﬂ'Yst
\

Xxz8 s —> S
TX goh
X—Fr—1Zz
The composition £ o) : X xz .5 — X Xz S then satisfies:
TxofoY =mxoth=mx
and:
Mg 0§01 =Tg0Myx, 501
=Tgo¢pomng
=TS OIdy
So £ o9 is the unique map making the following diagram commute:
\ s
f(@\
X Xz S s —> S
TX ‘
‘ﬂ'f goh
X —Fr——7

however, as before the identity map satisfies this as well so by uniqueness £ o 9 is the identity. Similarly,
¥ o & is the identity map as well, so X xz S 2 X xz (Y xy S) as desired.

It now suffices to show that as Z-schemes:
(X X2Y) XySgXXZ(YXyS)

We first note that as a Y-scheme we have the following commutative diagram:

(X xzY)xy S s — S
7"X>‘<ZY }‘L

! l

X xzY my —— Y
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Now note that that f onx = gomy, so we obtain that:

fomxomxx,y =gO0 Ty 0O Txx,Y

=gohomg
Hence we have the following commutative diagram:
(X xzY)xy S s — S
S

We have a morphism mxomx vy : (X xzY)xy S — X, and a morphism ¢ong : (X xzY)xy S = YV xy S
such that:

(gohoms)odoms =gohoms
=fomx oMxx,y
hence there exists a unique morphism ¢ : (X Xz Y) xy § = X xz (Y Xy S) such that the following

diagram commutes:

(XXZY) XyS
\
XXZ YXyS —Tyxys = Y Xy S

TXOMX x ;Y

TX QOLY
| |
X f Z

Now we go the other direction; we already have a morphism 7g oy x5 : X Xz (Y xy §) = Y, so we
need to construct a morphism a: X Xz (Y xgY) — X xz Y. We have a morphism to X, and we have
a morphism to Y given by my o my «x, s. We have that:

goTy oTyx,s = fomx

by the Z scheme structure on X xz (Y xgY) so « is then the unique map that makes the following
diagram commute:

X Xz (Y Xy S)
\
\ TYOTY xy S
\

XxzY —mv—3Y
i} _L
l l
X f—— Z

We now see that:
fomxoa=forx =gomy oTyx,s

so we have a unique map & : X xz (Y xy §) — (X xzY) xy S that makes the following diagram
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commute:
X Xz (Y Xy S)

\g\ﬂyoﬂnys
\
(X xzY)xy S Ts S

) |
TXXzY goh

| l

X xzY forx —— Z

Now note that & o ¢ satisfies:
Txxzy 0§oYp =aot
And moreover, see that:
TXOQOY =Tx 0 =Tx OTxXx,y
as well as:

Ty 00 =Ty 0Ty x, 50

—ry 0 poms
=ho s
:Idy o Ty
:7‘[‘Y
So a o 1 makes the following diagram commute:
(X Xz Y) Xy S
—_
\ TY OTY xy S
o) \
XXxXzV —nmy—Y
TXOTMX X 7Y ‘ ‘
X g9
X f—— Z

However, replacing mxx ,y also makes this diagram commute, so mxx,y = a0, and we have that:
TXxzY 050 = Txx,y
We also see that:

g0l o =g oMy x, 50
=Tgopomg

:7]'S
It follows that £ o1 makes the following diagram commute:

(X xzY)xy S

\\ﬂ'yoﬂ'YXyS
o)
\ \
XxzY —m—3
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since the identity map makes this diagram commute as well we have that & o1 = Id. We now see that:

Tx 0ol =Tx oMxx,y &
=Tx o

=«
while:

Tyxys 0ol =¢omsol

=) OoTMs O My xy 5
We claim that ¢ o wg is the identity map; indeed note that we have:
nmgogpomg =ldgomg =7g
while:
myoponmg =honwg =Idy oy =y

so ¢ o mg makes the following diagram commute:

YXyS

\\ﬂs
poms
N
N Y xy S s — S
7T‘y goh
| |
Y 9g— 7

However, so does the identity map, hence ¢ o mg = Idy «, s, and we have that:

TY xy S © Yol =pomgo TY xy S
=ldyxy50Tyxys

:7TY><yS

So it follows that ¢ o & makes the following diagram commute:

XXZ(YXyS)

\\WYXYS

\\

XXz (Y xy S) —mvxys = Y xy S

X go‘ﬂy
| |
X fomx A4

but again so does the identity so ¥ o £ = Id. It follows that:
(X ><2Y) XySgXXZ(YXyS)gXXZS
implying the claim. O

The following lemmas are extremely helpful in identifying schemes as fibre products, as well as mor-
phisms between them. They will be crucial in our existence proof of the fibre product.
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Definition 2.3.3. Let O, X, Y and Z, be schemes which fit into the following commutative square:

Q———Y

X —— 7

If the induced map @ — X Xz Y is an isomorphism, then we call the above diagram a cartesian square.

Lemma 2.3.4. Consider the following commutative diagram of schemes:

X' —mx— X' —mx— X
Wl// 77_‘9/ 71"S
l l l
S for— S’ fs— S

If the left and right squares are cartesian then the outer square is cartesian. Moreover, if the outer square
and the right square are cartesian, then the left is as well.

Proof. We need to show that the following square:

X" —nxorxr —+ X

7TS// T™s

l l

S” 7f$°fs/ — S

is cartesian. We do so by showing that (X", mg, mx o mx/) satisfies the universal property of the fibre
product. Suppose that @ is a scheme equipped with morphisms pg-» and px such that 7g o px =
fs o fs opgr, then we have the following commutative diagram:

Q\

px

A X" $ X
- + i
S for — S’ fs— S

In particular, since the outer square is cartesian we have a unique morphism px- such that the following

diagram commutes:
Q \\

pPx
Px’ \
Dun X”ﬁ X —rx—3 X
) J /
| ! |
S for— S’ fs— S

So now () comes equipped with maps px: : @ — X’ and pg: : Q@ — S” such that fs o psr = wgr 0 px-.
By hypothesis there is then a unique map ¢ : QQ — X" such that:

U O(i):psu and X O(b:pX/ (231)
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We thus need only show that:
TX OTx/ 0 =px
However, we know that px = mx opx’ so by (2.6) we have that:
TX OTx/ 0 Q= Tx OPpx/ = Px

hence X" satisfies the universal property of the fibre product and thus the outer square is a cartesian.

Now suppose the outer square and the right square are cartesian, and let @) be scheme equipped with
morphisms pg» : Q — S” and px/ : Q — X' such that fg: o pgr = mg o px,. We thus have the following

diagram:
Q
\

Pxr

Per X' —nxr— X' —ax— X
Tt T 7-;-‘5
S for— S’ fs— S

Now note that the map mx opx/ : Q — X makes the following diagram a commute:

Q
S

TXOPx/

-
AN \
jeopsn N T X ()
1 i)
| l
S’ fs— S

and since X’ is a fibre product, we have that px and mx/ o pxs are the unique maps that make this
diagram commute. We then obtain the following commutative diagram:

Per X' —nx— X —ax— X
S for—> S’ fs— S
Clearly we have that fso fg:opsr = mgomx opx/, so since the outer square is cartesian we have a unique
map ¢ : Q — X" such that:
mgro¢p=pgr and  Tx OoMxs0¢=Tx 0opx

So we need only show that:
TX1 0§ = pPx
However, this is clear as wx+ o ¢ satisfies:

fS' ) psu :fsl o Tmgr O ¢

:’]TS/O’]TX/O¢
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and trivially:
TX OTX/ 0 =Tx Opx

It follows that replacing px+ with mx o ¢ in (x) makes the diagram commute, so by the uniqueness of px-
we have that mx:0¢ = px,. Therefore, X" satisfies the universal property of the fibre product S” x g X’,
and the left square is cartesian. O

We continue with our litany of lemmas regarding fibre products:

Lemma 2.3.5. Let F: X — X' and G : Y — Y’ be morphisms of Z-schemes. Then there is a morphism
FxG:X xz X =Y xzY" which makes the following diagram commute:

X F Y
) T
TX Tx!

XxzY —Fxc— X' x5z Y’

Ty Ty
l l
Y e} Y’

Proof. Note that since F' and G are Z scheme morphisms, we have morphisms Fory : X xz YV — X'
and Gomy : X Xz Y — Y’ which satisfy:

floFomxy =fonrx =gomy =g oGomy
so we have a unique map F' x G which makes the following diagram commute:

XXZY

\\ Gomy
FxG
X' xzgY —my —5 Y
Formx ‘ ‘
Tx! g
X’ f— Z
We then see that:
GOﬂ'y:ﬂ'y/OFXG and FOTFX:WX/OFXG
so the diagram commutes as desired. O

We now come upon, and end our category theoretic results with, the first statement worthy of being
called a theorem. We adopt Vakil’s terminology and call this the magic square theorem, or the diagonal
base change theorem.

Theorem 2.3.1. Let X and X' be Y -schemes, andY a Z-scheme; then the following square is cartesian:

Xxy X —— X xz X'

Y ——— Y xzY

Before we prove this theorem, let us actually check that the above square is commutative, and con-
struct the maps. First, let f, f/ and g be morphisms making X and X’ Y-schemes, and Y a Z-scheme.
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The left vertical map is then given by f o wx (or equivalently f’ o mx/), and the right vertical map
is the map f x f’ constructed as in Lemma 2.3.5. Now, note that in the top right corner X and X’
are Z-schemes with the morphisms g o f and g o f’. Clearly, since f o rx = f/ o mx/, we have that

(go flomx = (go f')omxs. It follows that there is then a map 1 : X xy X' — X Xz X’ such that the
following diagram commutes”’

XXyX,
\
\ Tx/
UJ\)
e Xxg X —7mxr —5 X'
7r‘x gof’
l !
X gof —— 7

Finally, the bottom map is what we call the diagonal map A :' Y — Y xz Y, and is the unique map
which makes the following diagram commute:

Y

Ny YxzY —mn— Y
W‘y g
l |
Y 9— 7

Now, we want to show that Ao fomry = (f X f/) o4, and we do so by showing that the both make the
following diagram commute:

XXyX/ \ l
flomxs
; YxzY —mnv—Y
o X
JY l
| |
9—— 7

We see that:
my oAo fory =forx = fomx
so A o f o wx makes the diagram commute. Moreover:
Ty o(fx floy=fonxoyp=forx=fonmx
so the two are equal by the uniqueness of the morphism which makes the diagram commute. We thus
have that the square in Theorem 2.3.1 commutes and is:
Xxy X —yp— X xz X'

fomx Ixf

l !

Y A—— Y xzY

We now begin with actually proving the statement:

29 Abuse of notation alert! We are again denoting different projection maps in the same way. We hope our judicious
inclusion of diagrams helps the reader parse through this poor choice.
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Proof. We will show that X xy X’ satisfies the universal property of the fibre product. Let ) be another
scheme with morphisms a: Q — Y and 8: Q — X Xz X’ such that:

Aoa=(fxf)op (2.3.2)

Now first note that 3 is the unique map the makes the following diagram commute:

pPx ‘
TX gof’
l l
X gof —— Z

where px = mx o 8 and pxs = wxs o 3. The maps satisfy go f opx = go f' o px/, however we want to
show that the maps satisfy fopx = f/ o pxs. Applying 7y to both sides of (2.3.2) yields:

o=y o (f x f')of
=fomxof

=fopx
However, f omx = f omx: so we also have that:
a=fomrxof
=fopx
so fopx = fopxs. There is then a unique morphism ¢ : Q — X xy X’ such that the following diagram

commutes:

pPX
TX f
l l
X f—— Z

Now note that:

so we need to that:

and it suffices to show that:
mxoYop=py and  Twx oo =px
We have that:
Txoypodp=mxo¢=px
and that:

Tx 0Yo@=mx0¢=px
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so 1 o ¢ = [ by the uniqueness of 3. We thus have that ¢ is the unique map which makes the following

diagram commute:
Q \

\\

Xxy X —yp— X xz X'

fomx xf
| |
Y

A—— Y Xz Y

Therefore, X xy X’ is isomorphic to the fibre product Y xz X xz X’ and the square is cartesian as
desired. O

Now that we hav sufficiently established our results regarding fibre products that have nothing to do
with algebraic geometry, it is time to actually prove that the fibre product of schemes indeed exist. We
will prove this in varying steps, slowly building up to the general case. We begin where all schemes are
affine:

Lemma 2.3.6. Let X and Y be Z-schemes, and let X = Spec A, Y = Spec B and Z = SpecC. The
fibre product X Xz Y is then the affine scheme Spec(A @¢ B).

Proof. Since X and Y are Z-schemes, there are ring morphisms f§< :C — A and gg, : C — B which turn
A and B into C algebras so we can construct the tensor product A ® g C. The tensor product comes
equipped with maps 14 : A - A®¢ B,and tg : B> A®¢c B given by a — a® 1 and b — 1 ® b, and
satisfies the universal property that for any two maps ¢4 : A — R and ¢p : B — R such that:

$aofy =opogh

then there is a unique ring homomorphism « : A ® 5 C' — R such that the following diagram commutes:

A +—rk

Via the anti equivalence between the category of commutative rings and affine schemes, have that
Spec(A ®¢ B) comes equipped with projection maps mx : Spec(A ®c B) — X, wy : Spec(A®¢c B) = Y
which make the obvious square commute. If Q) is any scheme with maps px : Q@ > X and py : Q — Y
satisfying f o px = g o py, then the induced ring homomorphisms satisfy the conditions of the universal
property of the tensor product of commutative rings. It follows there is a unique ring homomorphism
A®pC — 0g(Q) which by Proposition 2.1.2 induces a unique scheme morphism ¢ : Q — Spec(A®¢ B)
which makes the following diagram commute:

Q\\

™~

Spec(A ®¢ B) — v —

X

|

X f

Py

N e —
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The affine scheme Spec(4A ®¢ B) then satisfies the universal property of the fibre product, implying the
claim. O

When the base scheme is affine Z = Spec C, we often denote the fibre product X xz Y by X x¢ Y.
We thus immediately have that:
AR xc AT =2 AT
via the isomorphism:
Clz1, ..oy 0] ®c Cly1,y - -, Ym] Z Cla1, ..., Tntm)

Clearly the same statement holds for any commutative ring. Before we continue with our construction,
we need the following result, where we note that we make no assumption on U, Z, or Y being affine:

Lemma 2.3.7. Let f : U — Z be an open embedding, and g : Y — Z be any morphism. Then U Xz Y
exists, and there is an induced open embedding U xz Y — Y.

Proof. Let V = f(U), then we claim that the open subscheme (¢! (V), Oy |s-1(y) is the fibre product
U xz Y. We first note that we have an inclusion map ¢ : g=}(V) < Y, as well as an isomorphism
f~1:V = U, so since glg-1(v) is a morphism g (V) = V, we have that f~! o 9glg-1(v) is a morphism
g Y(V) = U. Now note that:

fofogly1vy =9glg-1vy = g0t

so we have the following commutative square which we wish to show is cartesian:

g (V) — Y

| |
Flegly-1 ) j
U———fFf— 7

Let @ be a scheme and py : @ — U, py : @ — Y be morphisms such that fopy = gopy, then we want to
find a morphism ¢ : @ — g~ (V) such that f~*og|s-1(vyo¢d = py and Lo ¢p = py. Since fopy = gopy,
we must have py maps into g~*(V), so there is a unique morphism ¢ : Q — g~ (V) such that to ¢ = py.
Now note that:

ftoglgivyed=ftogoiog
=f"togopy
=ftofopy
=bu
It follows that g—!(V) satisfies the universal property of the fibre product U xz Y, so there is a unique

isomorphism ¢ : U xz Y — ¢g~1(V), and thus an open embedding U xz Y — Y given by ¢ o1 as
desired. O

Note that the morphism ¢ o ¢ is equal to the canonical projection 7y : U Xz Y — Y. In particular,
if U — Z and V — Z are two inclusion maps, then we have that by the lemma above U xz V ZUNV.
This matches up with the fact Ay ®4 A, = Ay,. We now have the following result:

Lemma 2.3.8. Let X and Y be Z-schemes, with X = Spec A, Y = Spec B and Z = Spec C. Moreover,
let the morphism o : Y’ — Y be an open embedding. Then the fibre product X xz Y' exists, and the
induced map X Xz Y' — X Xz Y is an open embedding.

Proof. Note that X xz Y is a fibre product, and so by the previous lemma (X xz Y) xy Y’ is a fibre
product as Y/ — Y is an open embedding and we have a morphism 7y : X Xz Y — Y. It follows that
the following diagram is commutative:

(X XzY) Xy Y/ —7xxzy 5 X Xz YV —ax —

Ty’ ‘n"y
l l
Y

X
|
l
Y’ a Z
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Since the right square and left square are both cartesian the outer square is cartesian, and we have by
Lemma 2.3.5 that (X xzY) Xy Y’ 2 X Xz Y’. By the preceding lemma we have that (X xzY) xy Y’ —
X X 7Y is an open embedding, so the induced map X x Y’ — X X 7Y is an open embedding as well. [

Lemma 2.3.9. Let X and Y be Z-schemes, with X = Spec A, Z = SpecC, and Y arbitrary. Then the
fibre product X Xz Y exists.

Proof. Let {U;} be an open affine cover of Y. For each U;, we have scheme morphisms g|y, : U; — Z
making each U; a Z-scheme, hence the fibre product X x 7 U; exists by Lemma 2.3.6. Let U;; = U;NU;™,
then the scheme obtained by gluing each affine open along U;; via the identity map is trivially isomorphic
to Y. For each i let V; = X Xz U;, and moreover we have a morphism g|U1.j : Uj; — Z which factors as
tog:Uy; = Uy — Z where v : Uj; = U;. By Lemma 2.3.8 we have that the fibre product X x z U;; exists

and that there is an open embedding oy : X xz U;; — V;.

We define V;; C V; to then be the open subscheme «;;(X xz U;;). Now note that U;; = Uj; C Y,
so we have an equality X xz U;; = X Xz Uj;. Denoting by ai_jl the isomorphism V;; — X xz U;;, we
obtain scheme isomorphisms ¢;; : Vi; — Vj; given by ay; o e

We want to glue the schemes V; together along the open subschemes V;; via these scheme isomorphisms.
Clearly we have that ¢;; = (bj_il, so we need to check that ¢;;(Vi; NVig) = Vi N Vjg and ¢i = Pk © ¢
on V;; N Vi,. Note that Vi; N Vi is the fibre product Vi; xy, Vir’', and similarly we have that Ve N Vi
is the fibre product Vj; xv, Vji. Now note that:

Vii2 X xzUj; EX xzU; xy U; 2V
while:
Vik 2 X xz U; xy Uy, and Vik 2 X xz U; xy Uy,
so:

Vi N Vik 2 Vij xv, Vig 2(X xz U; xy Uj) xv, (X xz U; xy Uy)
=X xz U; xy Uj Xy Ug
=X Xz Uijk
where U;j,, = Uy N U; N Uy. Similarly, we have that:
‘/ﬂm‘/‘]kg‘/ﬂ Xv; V}'k g(X XzUj Xy Ul) Xy, (X Xz Uj Xy Uk)
=X Xz Uj Xy Ul Xy Uk
=X Xz Ui
It follows that V;; N Vj is uniquely isomorphic to Vj; N Vj;. We need to show that this isomorphism is

precisely ¢;; restricted to Vi; N Vi, We note that the embedding a;; : X Xz U;; — V; comes from the
cartesian square:

X Xz Uij aij — V;
| |

U, U,

| l

Ui' —_— Uz

and since U, — U;; we have an open embedding B : X Xz Uyj = X xz U;;. Let 15, be the
isomorphism V;; N Vi — X Xz Uyjk, then we obtain the following diagram of cartesian squares:

V;‘jﬂv;‘k 7wijk*>X><ZUijk 7ﬁijk*>X><ZUij aij — V;
TU;jk TUq5k TU; TU;
Uijk Id Uijk . Usj L Ui

30Note that the intersection of two affine opens is not necessarily affine.
31'Which exists by Lemma 2.3.7 as both Vi; and Vjy, are open subschemes of V;
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However, the inclusion map ¢ : Vi; N Vi, — V; also makes this diagram commute, so we have that:
Q5 © 5¢jk © Z/Jijk =1
similarly we have that:
aji © Bjik © Yjik : Vii N Vi = Vj

is the inclusion map. It follows that these maps are isomorphisms onto their images hence we have that:

Qijl 8,0 (X x 2Uisn) © Bigh © Yijr = Idv,;nvy,
and:

il B0 (X % 2 Uy © Biik © Vjire = Idv, v,
so in particular,

ai:tv,avi, = Bijk © Vijk

Moreover, note that ;5 = Bjir, and that the unique isomorphism V;; NV, — Vj; NV, is given by
quﬂk o 151. We see that:

_1 — .. ..
wjik = a]Z|,3jz‘k(X><ZUjik) © ﬁﬂk
hence:

~1
Yk © Vijk =il (X x 2Us08) © Biiik © Vi

:aji|ﬁjik-(x><ZUuk) © a;jl
:(OLJZ (¢] Oéi_jl)
:¢z‘j
implying that ¢;;(Vi; N Vix) = Vj; N Vji as desired. It follows that ¢, (Vi; N Vig) = Vi; N Vi while:

ViiNOVig

ViiNVig

ViiNOVik

ik © G (Vig N Vir) = (Vi N Vi) = Vi N Vi

S0 ¢ji o ¢;; is the unique isomorphism Vi; N Vi — Vi N Vi, and ¢ = @i © ¢i;. We thus have that the
schemes V; and V; glue together along V;; for all 7 and j and are locally isomorphic to X xz Us.
We denote this scheme by S and show that it satisfies the universal property of the fibre product. We

first construct projection maps 7x : S =+ X and 7y : § — Y. We see that the isomorphisms ¢;; fit into
the diagram:

Vij

N T

¢\\

Tx jZ — Ui —> UZJ cY
|
‘N‘x 9|Uij
l l
X f—— Z

Note that here both mx and 7y,; are the restrictions of the projection maps mx : V; — X and my, :
Vi = U;; CY to V;; and similarly for V; and Vj;. We thus have induced morphisms 7x : § — X and
my : S — Y such that the following diagram commutes:



2.3. FIBRE PRODUCTS 134

We want to show that this square is cartesian, so let ( be any other scheme, with projection maps
px : @ — X and py : @ — Y which make the relevant diagram commute. We have an open covering of
Q by {ﬂ;l(Ui)}, and for each open we have a unique map &; such that the following diagram commutes:

\\ N

Vi U;
A i
l l
X —r— 7

We need to show that:
§j|7f§l(Uz‘j) =iz 0 €i|77;1(Uij)
We need only check that ¢;; o fi‘ﬂ_—l(U_j) makes the relevant diagram commute. Note that:
Y i
Tx O ¢y © €i|ﬂ;1(UU) =Tx O §i|,r;1(Ui].) = px
and:
T, © Qi © gi‘ﬂ;l(Uz‘j) = MU © §i|7f;1(Uij) - pylﬂ;l(Uﬂ)

so the two are equal, and we thus have a unique morphism ¢ : @ — S such that the following diagram

commutes:
Q—
\ Py
3 \

b S U

\T |

X —Fr— 7
so S satisfies the universal property of X xz Y implying the claim. O

We now move to the next case:
Lemma 2.3.10. Let X and Y be Z-schemes, with Z = Spec C'. Then the fibre product X Xz Y exists.

Proof. Let {U;} be an open affine covering of X, then by Lemma 2.3.9 the fibre products U; X z Y exist.
We have open embeddings U;; = U; NU; — U; given by the inclusion map. We have that the scheme
Ui; xu, (Ui xzY) exists, so we have the following commutative diagram:

Uij XU, (UZ Xz Y) —TUixzYy 5> Uy Xz Y — v — Y
| |
U, ; TU;
l l

Uij L Uz f|U,3 7

where the left and right squares are cartesian, so the outer square is cartesian. It follows that the fibre
product U;; Xz Y exists and comes with open embeddings o;; : U;jj Xz Y — U; xz Y. These open
embeddings satisfy the same properties as the ones in Lemma 2.3.9, so if Vj; = a4;(U;; Xz Y'), we have
isomorphisms ozj_il o ayj : Vi = Vj; which agree on triple overlaps. It follows that the V;’s glue together
along V;; for all ¢ and j, hence we obtain a scheme S which is locally isomorphic to U; Xz Y. The same
argument as in Lemma 2.3.9 shows that S satisfies universal property of X xz Y, implying the claim. O



2.3. FIBRE PRODUCTS 135

We now repeat the same result as in Lemma 2.3.8

Lemma 2.3.11. Let X andY be Z schemes, and suppose that there is an open embedding Z — Z', with
7' affine. Then the fibre product X Xz Y exists.

Proof. Let a : Z — Z' be the open embedding, and f : X — Z, g : Y — Z the morphisms making X
and Y Z-schemes. Then we have by Lemma 2.3.10 that the following square is cartesian:

XXZY —7ay — Y
7T‘X aog
l l
X aof —— 7!

In particular, since « is a monomorphism, we have that 7x o f = my o g, so the following square is
commutative:
XXxzpY —rmv—Y

g
Z
Let @ be any scheme, with morphisms px : @ — X and py : @ — Y such that the relevant diagram

commutes. Then we have that ao fopx = aogopy so there is a unique map Q — X x z Y such that the
fibre product diagram commutes. However, note that this same morphism makes the following diagram

S

f—

commute:
Q T
\ Py
¢ \

XXz Y —av—5Y

Px ‘ ‘

X g9

X f—— Z
so X Xz Y satisfies the universal property of X xz Y, implying the claim. O

We now prove the statement in generality:
Theorem 2.3.2. Let X, and Y be Z-schemes, then the fibre product X Xz Y exists.

Proof. Let {U;} be an affine open cover of Z, then for all i, set X; = f~1(U;) and Y; = g~ 1(U;), then by
Lemma 2.3.10 the fibre product W; = X; xp, Y; exists for all i. Set U;; = U; NU;, X;; = f~1(Uy;), and
Y;; = g~ '(Us;), then by the preceding lemma W;; = X;; Xy, Yi; exists for all ¢ and j, and is isomorphic
to X;; Xy, Yi;. There are then open embeddings W;; into W; and W; by Lemma 2.3.8.
We now show that W; satisfies the universal property of X Xz Y;. Indeed, we have the following
cartesian square:
W, — v, — Y}

TX; gly;

l !

X, — flx; — U;
Since f|x, = f ot, where ¢ is the inclusion map X; — X, and since we have inclusion maps ¢ : U; — Z,

we have the following commutative square:

Wi —TY; — Y;

LOTX; togly;

| |

X of— 7
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Now suppose we are given a scheme @, and morphisms px : Q@ — X, py, : @ — Y; such that:
Lo fopx =rogly,opy,

implying that fop has image contained in X;, and thus factors uniquely as
px = toax, where ¢ : X; — X is the inclusion map. We hus have that foroax, = f|x,cax, = gy, opy;,
so there is a unique morphism ¢ : @ — W; such that the following diagram commutes:

PY;

¢\
ax; WZ — Y; — Y;
X, glv;

| |

X, — flx, — U;
However, since mx, o ¢ = ax,, we have that:

LOTX, = LOax, = PX

so the following diagram commutes as well:
Q \

\\

W; — ™ — Y]

LOTX; eogly;
| |
X wof — 7

So W; =2 X xzY; as desired, and similarly that W;; = X xz Y;;. However, we are now in the same
situation as Lemma 2.3.9 as the only point where we used that X and Z were affine was for the existence
of the schemes X x 7 Y; and X xz Y;;. We can thus glue the schemes W; along W;; as before, and the
same argument shows that this scheme satisfies the universal property of X x Y, implying the claim. O

We now point out the following fact: fibre products in general have more points than naive cartesian
products. Indeed, consider the scheme X = SpecC[t], then the X x¢ X, is the spectrum of the ring
C[t] ®c C[t] = CJu,t]. The prime ideals of this ring are then certainly not of the form (p, q) for primes
p,q C C[t]. However, note that we that the closed points of Spec C[t,u] are in bijection with C2, which
is the naive set product of the closed points of Spec C[t] with itself (all points save the zero ideal are
closed in Spec C[t] though). We wish to extend this discussion to arbitrary, but first we need the following
definition, which we will explore more in the subsequent chapter:

Definition 2.3.4. Let k be a field, and X a scheme over Speck. Then X is locally of finite type over
k if there exists an affine open cover {U;} such that &x(U;) is a finitely generated k algebra.

We will need the following lemma:

Lemma 2.3.12. Let X be a scheme locally of finite type over k, then x € X is a closed point if and only
if there exists an affine open U = Spec A containing x such that x corresponds to a mazimal ideal of A.
In particular:

X1 =UIuil

i

for any affine open cover {U;}
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Proof. Let x € U C X, with U = Spec A, then x corresponds to a prime ideal p C A. We first claim
that {p} = V(p). Indeed, suppose V(I) is any closed set containing {p}, then we have that I C p, so
V(p) C V(I) implying that {p} = V(p). Now suppose that x is closed in the subspace topology, then
we have that {p} = V(p); if p C I for some ideal I C A, we have that V(I) C V(p) so V(I) = {p} or
V(I)=0. If V(I) = (), then T = A, and if V(I) = {p} then V(I) = V(p), so we have that /I = p, but
I ¢ V1 so I Cyp,implying that I = p. It follows that points which are closed in the subspace topology
of U are precisely the maximal ideals of A.

Now the stalk at « is the localization Ay, and the residue field k, is given by:
ky = Ap/m,

where:

p
Mo = {; P e P}
We claim that*?:
Ap/m, = Afp

Note that we have map A — A,/m, by combining the localization morphism with the projection mor-
phism to the quotient. If p € p, then p/1 € m, so this map factors through the quotient hence we have a
unique homomorphism:

P Alp — Ap/my
[a] — [a/1]

We claim this map is an isomorphism; indeed A/p is a field, so if [a] — 0 then [a] is not invertible and
thus must be the zero element. Now suppose that [a/b] € A,/m,, then since A/p is a field, there must
be an element h € A such that b-h —1 € p. We claim that ¢ ([ah]) = [a/b]; indeed note that:

ah a _a(hb—1)
1 b b
but kb — 1 € p, so this element lies in m,, and thus [ah/1] — [a/b] = 0 and ¢ is an isomorphism.

It follows that k, is a field extension of k, and is a finitely generated k algebra, so by Zariski’s lemma,

is a finite field extension of k. Now let V' = Spec B be another open affine containing z, and suppose
that q C B is the prime ideal associated to . We have that By/m/, = k,, and we now want to show
that B/q is a field. First note that there is a morphism B — By/m/, which again sends any element in
q to zero, so we have a unique morphism B/q — B,/m/. This morphism is injective as if [a] — 0, then
this implies that a/1 € m/, but for this to be true a must lie in q. It follows that we can identify B/q
as (a priori) a sub k algebra of By/m,, which is a finite dimensional k-vector space, so B/q must also be
a finite dimensional k-vector space. However, B/q is prime so B/q is an integral domain and the linear
map of k vector spaces:

29
33

M[b] : B/q — B/q
[a] — [a] - [0]
is thus injective for all nonzero [b] € B. Indeed, if [a] - [b] = 0, then [a] = 0 so the map is injective. By

rank nullity the map is an isomorphism, so there must exist an [a] such that [b] - [a] = 1 implying that
B/q is a field, so q is a maximal ideal.

We have thus shown that if x € U is closed in the subspace topology, then = corresponds to a maximal
ideal in every affine open containing x, and is thus closed in every such open affine. Now let {U;} be an
open affine cover of X, then:

XAz} = U(Ui ~A{z})

We see that U; \ {z} is open in X for all 4, as either U; \ {z} is U; since x ¢ U;, or U; \ {z} is open in
U, as {z} is closed in Uj;, so it is open in X. It follows that X ~ {x} is open, so {z} is a closed point. If

32This is only true as we are supposing that p is a maximal ideal!
33See Theorem 6.1.3
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x € X corresponds to a maximal ideal p € U = Spec A, then z is closed. Conversely, if z is closed, and
U = Spec A. is an open affine of X containing z, then we have that:

U~{z}=Un(X ~{z})

so U ~\ {x} is open in the subspace topology, implying that {«} is closed in the subspace topology and
thus corresponds to a maximal ideal of A, as desired.

The second claim is now clear, because every closed point of x is a closed point of every affine open,
and vice versa. O

‘We now turn to the main result:

Theorem 2.3.3. Let X and Y be schemes locally of finite type over k with k algebraically closed. Then
there exists a bijection:

¢ X X Y[ — | X| x Y]
z+— (rx(2), 1y (2)) (2.3.3)

Proof. Let {U; = Spec A;} and {V; = Spec B;} be affine open covers of X and Y respectively. We then
have that {U; x;, V; = Spec A; ®, B;} is an affine open cover of X x; Y. We see that each A; ®; B; is a
a finite generated k-algebra. We first determine a bijection

Ui xx Vil = Uil x [V}

for all ¢ and j. We suppress the the indices going forward. The projection map mwx is locally induced
by the inclusion t4 : A - A®, B. Let m C A ®; B be a maximal ideal, then we have a morphism
Y A - A®; B/m by composing with the projection onto the quotient. We have that A ®; B/m
is a field, and a finitely generated k algebra so A ®; B/m is a finite field extension of k by Zariski’s
lemma. Note that if a € kert), then we have that t4(a) € m, so a € ¢;'(m), and if a € ¢ (m) then
Y(a) =0, so keryp = 1" (m). We thus have an injective morphism v’ : A/i;'(m) — A ®; B/m, which is
an isomorphism onto its image. We want to show that ¢(A/c,;"(m)) is a subfield of A ®; B. However,
since m is maximal, we have that ¢ (m) is prime so ¢'(A/:;;*(m)) is an integral domain. It follows that
A/Lgl(m) is an integral domain. The argument in Lemma 2.3.12 then demonstrates that since A®j B/m
is a finite field extension of k, and A/ L;ll(m) is a finite k-algebra as well as an integral domain, that
A/ LZl(m) must be a field. Therefore, the morphisms mx and 7y take closed points to closed points.

We thus define our morphism ¢ : |U x; V| — |U| x |V by (2.8) restricted to U x; V. We define an
inverse map by taking the pair (m,n) € |U| x |V| and mapping it to the ideal I = (t4(m),tp(n)). Now
we claim that A ® B/I is a field; indeed we have the following canonical isomorphism:

A ®y B/IEA/m(X)k B/n

which is a finitely generated k algebra, and is finite as both A/m and B/n are finite field extensions of
k. Since k is algebraically closed both fields are isomorphic to k as the only finite field extension of an
algebraically closed field is k. We check that this is indeed an inverse, let (m,n) € |U| x |V, then we have
that ¢ o ¢~ (m,n) = (13" (I),t5"(I)). We see that by definition ¢4(m) C I, hence 1" (1a(m)) C t3* (1),
but m C ¢ (ta(m)), so m C ¢;*(I) implying that m = ¢,'(I) as m is maximal. The same argument
holds for n, so we have that ¢ o ¢! = Id. Now suppose that m C A ®, B, then m is the kernel of a
morphism v : A ®, B — k, and such a morphism induces morphisms ¥4 : A — k and ¥g : B — k such
that the following diagram commutes:

ké\\w

N

A®,B+——2—B
Pa
A+——— £k



2.3. FIBRE PRODUCTS 139

If a € 1;'(m), then a € ker(ty o) = kerta, so we have that ¢;'(m) = kert 4, and similarly that
15 (m) = ker¢p. It therefore suffices to show that kere = (1a(kerta), tp(kerep)). Note that by the
same argument we know that (v (ker,),tpker¢p) is maximal, so let w € (14(kerva), tp kerp), then
we see that w = 8- 14(a) + & - tp(b) for some a € ker4, b € ker ¢, and some ,¢ € A ® B. Clearly
Y(w) =0, so we have that (ta(kerv ), p(keryp)) C kert. We thus have that

m = kery) = (La(kerga),ep(ker ¢p)) = (taliz’ (m)), ep(ep' (m)))
so ¢ Log=Id.
Now by the preceding lemma we have that:
Xoa Y[ =i xe Vil and X[ x Y] = Uil x V]
ij ij

Since our projection maps agree on all overlapping open sets, they must agree on overlapping closed
points, hence the local bijection induced by the inclusion homomorphisms described above also agrees on
overlapping closed points. It follows that the bijections |U; x V| — |U;| x |V;| glue together to yield the
desired set bijection, implying the claim. O

We will use fibre products in the following section when we further discuss the topological and algebraic
properties of schemes and their morphisms. For now, we end with the following examples:

Example 2.3.1. We claim that P¢ = P} xz SpecC, where here the fibre product is taken over SpecZ.
Note that we have a morphism g : SpecC — SpecZ induced by the inclusion map Z — C, and a
morphism P} — SpecZ induced locally by the inclusion map:

Z < Z[{x1 /i }izi]

Indeed, for each i, the above morphism of rings induces morphisms of affine schemes f; : U;, C P} —
SpecZ. We have that

Up, MUy, = Uyg,o; = Spec Z[{wy /i Y123, T4 /5]

It follows that the morphisms fi|Umimj : Ug,z; — SpecZ and fj|Umixj : Ug,z; — SpecZ are induced by the
inclusion map:

Zo— Ll{xy/xi Y120, w6 ) 35]

so they trivially agree. It follows that we have a morphism f : P}, — SpecZ. Now we wish to define
morphisms py : P¢ — SpecC, and px : P¢ — P;. We define the first morphisms as we did in the case of
P, and we define the second morphism by first defining ring morphisms:

Zl{zi/zihizi] = Cl{ai/2i}ii]

induced by the map Z — C, and then noting that these give scheme morphisms U,, C P¢ — Py which
have image contained in U, C P};. These scheme morphisms then trivially agree on overlaps so we have
a morphism px : P¢ — P7. We claim that:

fopx =gopy

and it suffices to check this on affine opens. Indeed, if we restrict to U,, C P¢, then these are morphisms
of affine schemes, so it suffices to check that the corresponding ring morphisms agree. We see that the
first ring homomorphism is given by:

(fopx)ly,, + Z — Cl{ai/wi}iz]

ZH—r 2z

while the second is given by:

(9o, : Z — Cl{zr/zi}iz]

ZH— 2z
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so the two agree. There is thus a unique morphism ¢ : P¢ — P7 xz Spec C, which we wish to check is an
isomorphism. We have the following diagram:

C\\

\\

P} xz SpecC — v — SpecC

& |
l l
i Z

f

We see that mx 0 ¢[v,, = px|v,,, and the px|v, has image in U,, C PZ, so ¢[y,, is the unique morphism
which makes the following diagram commute:

3
— 5—
N—o—

f

where we have identified U, xz SpecC with the open subset of P} x Spec C which satisfies the same
universal property’*. Since all these schemes are affine, we now go to the ring picture, and see that we
have the following diagram:

Cl{z1/mi }1i]
<\\ :

Py
#
¢|U11

T~

4 Z{x1/xi}i5) @7, C —nl C
i T ’l*
ﬂX\le
\ |
Zl{x1/xi} 1) Z

We note that these projections must be given by p — p® 1, and w — 1®m, sothe map h: pRQw — p-w
makes the diagram commute. It follows that ¢|?Jx =h, so ¢|¥J; is an isomorphism, implying that ¢[v,,

V

|

is an isomorphism. Since ¢|y, is an isomorphism for all z;, we have that:
a2

n

d(PL) = U o(Uz,) = U U, xz SpecC = P} xz SpecC

i=0 i=0
so ¢ is surjective, and is clearly injective. Moreover, we see that if U C P{ is any open set, then we can
write:

n

$(U) = JoUnU.,)

=0

which is a finite union of open sets, so ¢ is a bijective open continuos map implying that ¢ is a homeomor-
phism. Moreover, the map ¢ : ﬁngZspCC@ — O ﬁ]pg restricts to isomorphisms ¢ﬁ|Umi : ﬁ]p; XZSPCCC|U.—ni —

34 A1l is well because this how we explicitly constructed the fibre product!
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(gf)*ﬁ]pg”UTl as:
Opp xzspecC(Us,) = Z{a1/2i}i2i] @2 C - and (¢4 Opn)(Us,) = C[{zi/xi}]

and ¢ﬁ|UIi is then given by the isomorphism h. By Corollary 1.2.4, it follows that ¢! is indeed an
isomorphism of sheaves, so (¢, ¢*) is an isomorphism of schemes as desired, implying the claim.

Though we have proved this in the case of C and Z, the same proof shows that Py = P} x 4 Spec B,
whenever B is an A algebra.

Example 2.3.2. Let A be any commutative ring, and I and J be ideals of A. We then claim that:
V(I) xa V(J) = Spec(A/ (I +J))

where V(I) and V(.J) have the natural induced reduced subscheme structure. However, this follows from
the easily verifiable fact that:

AJT@a AJTZA/(T+J)
Moreover, since the scheme Spec(A/ (I + j)) is isomorphic to V(I 4 J), we have that:
V) xa V(J)=V{I+J)=V({I)NV(J)

In particular, if X and Y are closed subsets of Z equipped with induced reduced subscheme structure,
we have that:

XxzYV=2XNnY

where X NY is equipped with the induced reduced subscheme structure.

Example 2.3.3. Recall from Example 2.2.3 where we showed that |X = ProjClz,y, z]| & |AL] x |P{|
when Clx,y, 2] is equipped the grading induced by degz = 0, and degy = degz = 1. We now claim
that as schemes X = AL x¢ P, Let U, and U, be the distinguished open sets of X, and ¢,, the
ring isomorphism Clz,y/z, z/y| — Clz, z/y,y/z] sending « — =z, y/z — z/y, which induces the gluing
isomorphism along U, N U,. Then we have ring homomorphisms:

Lym : (C[JZ] — ((C[‘T7y7 Z]y)o = (C[x,z/y]
r—

and similarly a ring homomorphism ¢, for C[z,y/2] which clearly satisfies ., o 1;, = ¢}, where the

primed morphisms are the ones composed with the inclusions Clz, z/y], Clz,y/z] — Clz,y/z,z/y]. Tt
follows that the induced scheme morphisms agree on Uy, so we get a unique morphism paL X — Al

Now we set IP’%: = Proj C[u, v] with the standard grading, and note that the ring homomorphism:

tyu : Clv/u] — Clz, z/y]
v/ur— z/y

induces a morphism of affine schemes:
pyu:Uy—>UuCIP’%:

Similarly, the morphism ¢, : Clu/v] — Clx,y/z] given by u/v — y/z gives a morphism of affine schemes
Pzv : Uy = U, C PL. We see that on the overlap Pyulu., and p.,|u,, are induced by the ring homomor-
phisms:

v/u € Clv/u,u/v] — z/y € Clz, z/y,y/z] and u/v € Clu/v,v/u] — y/z € Clz, 2/y, y/ 7]

Clearly we have that £.,(z/y) = y/z so we have that £, 0 tyy = Lyu, 50 PyulU,, = Pzo|u., implying that
the morphisms glue together to yield our second map pey X — IP’%:. If f and g are the morphisms

making A{ and P¢ C-schemes’, then we clearly have that fopy = go pp1, hence there is a unique

35The constructions are essentially the same as in Example 2.3.2
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morphism of schemes making the following diagram commute:

X

\\ Ppl,
P \ N

- Al xcPL L — PL

. |

) l

Al f—— C

We claim this morphism is an isomorphism. Indeed, we have that A}C xcU, and A%: xcU,, cover Aé XC]P’%:,
and that U, and U, cover X. We see that by the constructions of the maps ey and p,: that [y, must
make the following the diagram commute:

Uy —
\ p]})ﬂ{lUu
w‘Uu -
b AL xc Uy — 70— U,
”A\Qlj g
l l
Al f—— C

so we have the following commutative diagram in the category of rings:

Clz,y/2]
y,\(\\ Lyu

But the isomorphism 2 ® (u/v) — - (u/v) makes this diagram commute so |y, : U, — Al xc U, C
Al x¢ P is an isomorphism, and similarly for 1|y, . Since Al xc P = (AL xc U,) U (AL xc Uy) it follows
that v itself is an isomorphism, implying the claim.

Example 2.3.4. We claim that there exists a morphism:
P¢ xc Pg — P2
which on closed points satisfies:
([wo,w1], [20, 21]) — [woz0, w120, w021, W1 21]

Set the first copy of P§ to Proj Clzg, z1] and the second to be Proj Clyo, 1], also set P2 = Proj Clvg, v1, vz, v3).
Now we have have an affine open cover of P¢. x¢ Pg given by {Us, x¢ Uy, }i;, meanwhile P2 is covered by
{Uu, }- We can write [wg,w] as the homogenous prime ideal:

[’U)(),’U)l] = <x0w1 — xle> C (C[xo,xl]
If [wo,w1] € Uy,, then this corresponds to the prime ideal:

[U}O7U}1] = <.’El/.’E0 — wl/w()) C C[.’El/xo]
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and similarly if [zg, z1] € Uy,, then:

[20, 21] = (Y1/y0 — 21/20) C Cly1 /0]

We can thus rewrite [wp,w1] and [z, 21] as [1,w1/wo] and [1, z1/2]. Our desired morphism will then
send these two pairs of points to [1,w;/z0, 21/ 20, w121 /wozo] which lies in U,,. We thus need a morphism
of affine schemes Uy, x¢ Uy, — Uy, which satisfies:

<$1 w1 Y1 Zl> <1}1 w1 Vg Z1 Us w121 >
I= — = )y = =
To Wo Yo 20 Vo Wo Vo 20 Vo WowWi
and we claim this is given by the ring homomorphism:
po : Clv1/vo, va2/vo, v3/v0] — Clz1 /20, Y1/Y0]
1‘1/1‘0 ifi=1
’Ui/’l)()'—> yl/yo ifi=2
(x1/m0) - (y1/yo) fi=3
It is then clear that:
<vl_wl v 2 vs w1Z1>C¢1 (<$1_wl yl_Zl>>
vo  wo Vo Zo Vo  Wowi 0 o wo Yo o 20
as the first two generators of the left hand side trivially map into I, and the third generator satisfies :
Bo(vs/vo —wiz1/2021) =(x1/0) - (Y1/y0) — w121/20%1
=y1/yo (x1/20 — w1 /wo) + w1 /wo (y1/y0 — 21/20)

Since the left hand ideal is maximal, we have equality, and thus our ring homomorphism ¢y induce
scheme morphisms which satisfy the desired property on closed points. By the same logic we define
@i C[{vj/vi}j=i] = Clek/x1, Ym/yn] where we have that:

(1,0,1,0) ifi=0
0,1,1,0 ifi=1
(k,l,mﬂ’L)— () ) 7) lZ
(1,0,0,1) ifi=2
(0,1,0,1) ifi=3

by:

¢1 : Clvg/v1,v2/v1,v3/v1] — Clao/21, y1/Y0]

Zo/21 ifi=0
vi/vr = ¢ (zo/21) - (y1/y0) ifi=2
Y1/Yo ifi=3
¢2 : Clog /v2,v1/v2,v3/v2] — Cla1/20,Yo/y1]
Yo/ if i =0
v;fva > § (z1/20) - (yo/y1) ifi=1
r1/T0 ifi =3

¢3 = Clvg/vz,v1/v3,v2/v3] — Clao/z1,Y0/Y1]

(xo/x1) - (Yo/y1) ifi=0
vi/v3 — Yo/ ifi=1
To/1 ifi=2

which then induce the morphisms:
Vi 1 Ugy X Uy, — Uy,

We will show that these maps glue together in the specific case of Uy, xcUy, NUy, XcUyy = Ugya, X Uyous
which is isomorphic to the affine scheme X = Spec C|x1/x0, Zo/x1, Y1/Y0,Yo/y1]. When identifying these
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affine open subsets with this affine scheme, we see that the isomorphism gluing Uy, Xc Uy, with Uy, Xc Uy,
along Ugyz, X¢ Uy,y, is given by the tensors product morphism induced by the gluing U,, and U,, along
Uzyz, and similarly for Uy, and U,,. It follows that the gluing isomorphism & : X C U, xc Uy, — X C
U, xc Uy, is induced by the ring automorphism:

¥ Cla /20, o/21, Y1 /Y0, Yo/ y1] — Clx1/x0, T0/T1,Y1/Y0, Yo/ Y1)

which sends each generator to itself. The morphisms we wish to glue are clearly ¢, and 3, and we
see that 9;|x and v2|x now clearly have image in U,,,, which as a subset of U,, we identify with
Spec Clvg /v, v2/v1,v3/v1,v1/v2], and as a subset of U,, we identify of Spec Clvg/va, v1/v2, v3/v2, U2 /v1].
Let n: Uy, C Uy, = Uyyo, C Uy, be the gluing isomorphism, then to show that these agree, we have to
show that:

noYi|x = Ya|x

so it suffices to show that:

(¥1lx)F onf = (¥x)*
Recall that n* is given by:

n* : Clvg /v, v1/v2, v3/v2, v2/v1] — Clug/v1,v2/v1,v3/v1,v1/V2)]

(vi/v1) - (v1/v2) fi#2and j=2
v /vj —> vy /g ifi=1and j=2
’02/1}1 ifi:2andj:1

while the maps (1]x)* and (12| x)* are the maps induced by localization. We now calculate the image
of each generator beginning with vy /va:

(¥1]x)* o n* (vo/v2) =(¥h1|x)*(vo/v1 - v1/v2)
:170/171 : 551/930 : yo/y1
Zyo/yl

while:

(%2]x)*(v0/v2) = yo/y1
For the next generator we have that:
(¥1]x)% o nf(v1/v2) =(11]x)F(v1/v2)
=x1/T0 - Yo/Y1
while:
(¥a|x)*(v1/v2) = 21 /20 - yo /91
For vs/ve we have that:
(11]x)F 0 0 (vs/v2) =i (v3/v1 - v1 /v2)

=y1/Y0 - T1/Z0 - Yo/

=x1/%0
while:
(W2lx)*(vs/v2) = w2 /0
Finally, we have that:

(1] x)* ot (va/v1) = (1]x)* (v2/v1) = 0 /21 - Y1 /Y0

while:

(o] x)* (v2/v1) = 2o /21 - ¥1 /90
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2.4 Some Category Theory: Representable Functors

Over the next two sections we wish to develop an alternative but equivalent view of schemes, which will
at times prove more convenient to work with. To do so, we first must take a detour through some abstract
nonsense. Recall that a category ¥ is locally small®® if the Hom ‘sets’ are actually sets. We begin with
the following lemma/notation:

Lemma 2.4.1. Let € be a locally small category, and Y an object. Then there exists a contravariant
functor hy : € — Set which sends an object X to Set via:

X — Homg (X,Y)
and sends f € Home (X, Z) to the morphism:

hy (f) : Homg(Z,Y) — Home(X,Y)
a— ffa=aof
Proof. This is all essentially obvious, but we spell it out to fix our notation. Clearly if hy defines a functor
then it is contravariant. Moreover, for Id € Home (X, X), we have that hy (Id) is clearly the identity

morphism on Homg (X, X). Now let f € Hom¢ (X, Z) and g € Home (Z, W), then go f € Home (X, W).
Let o € Home (W, Y), then:

hy(go f)(a) = (go f) a=ao(gof)=(97a)o f = [*(g"a) = (hy (f) o hy(9))()
Since a was arbitrary we have that:

hy(go f) = hy(f) o hy(g)
implying the claim. O

Definition 2.4.1. Let ¥ and 2 be categories. The product category is the category where objects are
pairs (X, X9), and morphisms are pairs of morphisms (f¢, fo), where fo : X¢o — Yo € Home (Xe, Ye)
and g: Xg =Yg € HOHI@(X@,Y@).

One easily checks that the above is a category.

Example 2.4.1. Let € be a locally small category, and 2 = €°P, i.e. the object of & are the objects
of ¢ but ‘morphisms go the other way’, so a morphism X — Y in Z is given by f € Hom (Y, X).
The product category € x €°P is then of interest as we have a contravariant Hom(+, -) functor given by
(X,Y) » Hom(X,Y), which sends a morphism (f,g) : (X,Y) — (W, Z) to the morphism:

Homeg (W, Z) — Home (X,Y)
a—>goaof

as g : Y — Z is an element of Hom(Z,Y). One can make this covariant by considering Hom(-,-) as a
functor €°P x €, then if (f,g): (X,Y) — (W, Z), we have that the natural set map is given by:

Home (X,Y) — Homeg (W, 2)
ar—>goaof

since in this case f : X — W is an element of of Hom¢ (W, X). The above is also an example of the fact
that any contravariant functor can be viewed as a covariant functor from the opposite category.

Let €7 denote the category of covariant functors from % to 2, and %5 the category of contravariant
functors from % to 2, where the objects in both are covariant/contravariant functors, and the morphisms
are natural transformations. We denote the class’” of natural formations between covariant /contravariant
functors .# and ¢ by Nat(.#,9), and note that Nat(-,-) can be viewed as a covariant, or contravariant
functor from a suitable product category to the category of classes.

36This is a borderline technicality that we honor here for the sake of being precise. In reality, we will almost never deal
with a category which is not locally small. Moreover, its not exactly important that categories are locally small, the most
vital results of this section, such as Yoneda’s lemma, will still hold, the functor h4 will just have a different target category,
namely the category of all classes.

37Generally the collection of all natural transformations do not form a set, but a class.
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We also have the notion of an evaluation functor. That is given categories ¥ and 2, we have a
contravariant functor ev : € x 6, — 2 given on objects by (Y,.#) — .Z(Y). Letting (f,F) : (Y, #) —
(X,9), we obtain the following the following commutative diagram:

F(Y) () — F(X)

| T

Fy FX

YY) +—9hH— Y (X)

so we send (f,F) to Z(f) o Fx, or equivalently Fy o 4(f). It is then clear that ev is a contravariant
functor ¢ x €, to 2.

We also term the following contravariant functor from & : € x 655 to Class™, the category of classes,
given on objects by:

(Y, .F) —> Nat(hy, F)

If (f, F): (Y, #) — (X,¥) is a morphism, then note that we have a natural transformation f : hy — hx
defined by:

fz:hy(Z) — hx(Z)
a— foa

It follows that G o f is a natural transformation hy = ¢, while F' is a natural transformation ¢ — %.
Hence, we send (f, F') to the morphism:

G € Nat(hx,9) — F oG o f € Nat(hy,.7)

We call % the Yoneda functor®”, and note that by reversing arrows, this can be entirely formulated
covariantly. The following famous result is known as Yoneda’s lemma:

Lemma 2.4.2. Let € be a locally small category, and consider the evaluation functor ev : € X set —
Set. There is a natural isomorphism.:

Y =ev
In particular, for allY € €, and F € 6set, we have that:
Nat(hy, #) = Z(Y)
Proof. Fixing an object (Y,.%), we first determine a morphism:
Ty,z : Nat(hy, #) — Z(Y)

Let G be a natural transformation, then this is the data of a morphism Gz : hy(Z) — Z(Z) for all
objects Z of € such that if f: Z — W is a morphism in € the following diagram commutes:

hy(Z) — Gz —> 9(Z)

In particular, Gy is a map:

Homg (YV,Y) — Z(Y)

38 As we are about to see, this functor will actually have target in Set. We stress again that we do not really care that
much about classes, and are simply paying heed for the moment out of necessity.
39This is not standard terminology.
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so we send G — Gy (Ida) for all F. We need to check that this is actually a natural transformation, i.e
that the following diagram commutes:

Nat(Y, #) — Tv.os — F(Y)
& (f,F) ev(f,F)

Nat(X,¥9) — Tx.9 — 4(X)
Let G be a natural transformation hy — ¢, then we have that:
ev(f, F) o Tx»(G) =ev(f, F)(Gx(1dx))
=Fy o¥9(f) o Gx(Idx)
However, G is a natural transformation hx — ¢, so the following diagram commutes:

hx(X) —Gx — g(X)

hx (f) 4(f)

! !

hx(Y) —ay — 4(Y)
hence:

ev(f, F) o TX7§¢(G) = Fy o] Gy o hx(f)(ldx)
Now, hx (f) is the morphism:

Homg (X, X) — Home (Y, X)
ar—qof

hence hx(f) = f € Hom (Y, X) so:
ev(f, F)oTx 4(G) = Fy o Gy(f)

Similarly, we have that:

Ty,z o ¥ (f, F)(G) =(FoGo f)y(Idy)
=y oGy o fy(Idy)
=Fy o Gy (f)
so the diagram is commutative and T' defines a natural transformation Y — ev.

Now Z(Y) is a set by assumption; let z € #(Y), then we want to define a natural transformation
G, € Nat(hy, #). Let Z be any object in €, and define a morphism:

fr—=Z()(z)
as Z(f) : F(Y) = F(Z). We need to show the following diagram commutes:

hy(Z) — (G)z — F(Z)

T T

hy (g) Z(9)

hy (W) — (Go)w — F (W)

for any g : Z — W. Let f € hy (W), then hy (9)(f) = fog, and (G,)7(f o) = F(f o g)(x). Meanwhile,
(Go)w(f) = Z(f)(z), and F(g) o Z(f)(z) = F(f o g)(x) as F is contravariant. It follows that G,
determines a natural transformation hy — .#. Define Sy, & by:
Syg : F(Y) — Nat(hy, F)
z+— Gy
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then we need to show that this determines a natural transformation as well, so once again consider the
diagram:
F(Y) — Sv,s — Nat(hy, F)

T 1

ev(f,F) &Y (f,F)

G (X) — Sx,9 — Nat(hx,¥)

for all morphisms (f, F) : (Y,.#) — (X,9). Let x € 9(X), and set:
2= By o9(f)(x) = Z(f) o Fx(x)
then:
Sy 0 ev(f, F)(x)
is the natural transformation G,. We then need to show the following equality of natural transformations:
FoG,of=0@G,
Let W be any object in €, then (G,)w send g € hy (W) to .Z (g)(z) so:
(G2)w(g) = F(9)(F(f) o Fx(x)) = F(f o g) o Fx(x)

Meanwhile,

(F oGy Of)W(g) =Fw oGy(fog)
=Fw o9 (fog)(z)

Note that fog: W — X, so by the naturality of F', we have that:
(FoGyo flw(g) =Z(fog)o Fx(z)
Therefore S determines a natural transformation ev — % as desired.

It remains to show that SoT =Idy and T o S = Ids,. We can do this object wise, let (Y,.%) be a
pair, then:

Sy’l@ o Tyﬁg : Nat(hy, 9) — Nat(hy, y)

Let G € Nat(hy,.#), then Ty #(G) = Gy (Idy) € .Z(Y). We need to show that the natural transforma-
tion corresponding to x = Gy (Idy ), G, is equal to G. Let W be an object of ¢, and consider g € hy (W),
then:

(Ga)w(g) = Z(9)(x) = F(9)(Gy(Idy)) = Gw o hy(g)(Idy) = Gw(g)

It follows that G = G, hence Sy, z o Ty # = Idy.

For the other direction we have:
Tyyg o Sy’gz : y(Y) — y(Y)

Taking a point x € F(Y'), we need to show that (G,)y (Idy) = . However, (G,)y (Idy) = % (Idy)(z)
Id#(y)(z) = z, implying the claim.

o

The following corollary, known as the Yoneda embedding, is immediate:

Corollary 2.4.1. Let X and Y be objects in a locally small category €, then there is a natural bijection:
Nat(hy, hx) = hx(Y) = Homcg(Y, X)

Note that if we denote by hY and h¥ the covariant analogues of hx and hy, then almost verbatim
the same proof shows that:

Nat(hY,.7) = Z(Y)
where % is now a covariant functor. In particular,

Nat(h¥, h*) = Home (X, Y)
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Example 2.4.2. We explore the implications of the Yoneda lemma in a concrete algebraic category.
Let ¥ = Moda be the category of A modules, and M and N modules. Then in particular, every
natural transformation from Hompeq , (-, M) to Hompged , (-, N) is uniquely determined by an A-module
homomorphism M — N.

Definition 2.4.2. Let .% be contravariant functor 4 — Set, then .# is representable, if there exists a
natural isomorphism F = hy for some object Y.

Lemma 2.4.3. Let .Z be a representable functor, represented by Y. Then the pair (Y, F : hy — %) is
unique up to unique isomorphism.

Proof. Let F' : hy — % be a natural isomorphism, and suppose that G : hx — % is another natural
isomorphism. It follows that G=' o F : hy — hx is a natural isomorphism, and thus corresponds to a
unique morphism in Hom¢ (Y, X). This morphism is given by a = G;,l o Fy (Idy), and similarly we have
a morphism 8 = Fy' o Gx(Idy) € Home (X,Y). We see that we have the following diagrams:

hy (Y) — Py — F(Y) hx(Y) — Gy —s F(Y)
T T | |
hy (o) ZF () hx(B) F(B)
| | | |
hy(X) — Fx — ﬁ(X) hx(X) —Gx —> E(X)

It follows that for 8 € hy(X), we have that hy (a)(8) = B o «, and that Fy (8o a) = F(a) o Fx ().
Since 8 = F)El o Gx(Idx):
F(a)o Fx(B) = F(a) o Gx(ldx) = Gy o hx(a)(ldx) =Gy (a)
:Gy(G;l o Fy(Idy))
—Fy (Idy)

Since Fy is an isomorphism it follows that 8 o a = Idy. Similarly, for « € hx(Y), we have that
Gx(aopf)=F(B)oGy(a). The same argument shows that:

Z(B) o Gy (a) =F(B) o Fy(1dy)
=Fx o hy (B)(Idy)
=Fx(pB)
=Fx(Fx' o Gx(Idy))
=G x (Idx)

Since G is an isomorphism, it follows that «o8 = Idx, so a and 8 are unique isomorphisms as desired. [

Example 2.4.3. Let Vec be the category of vector spaces over some field k. Consider the functor
D : Vec — Vec given by V +— V* and A : V — W maps to A* : W* — V*. This is a contravariant
functor, is easily seen to be represented by k, essentially by definition.

Consider again the category of A modules Mod,, and fix an object N. Define a functor by # :
Mod 4 — Set by:

F (M) = {A — bilinear forms on M @& N}
If ¢ : M — M’ is a morphism of A-modules, then we define a morphism:
F(p): F(M') — F(M)
wr— d'w

where ¢*w is the form on M @ N given by (¢*w)(m,n) = w(¢d(m),n). This clearly defines a contravariant
functor, and in particular we claim is represented by N* := Hompioq , (N, A). Indeed, define:

Br— fs
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where fg : M — N* is the morphism given by m + (m,-) € N*. This is clearly A-linear for each M,
and given ¢ : M — M’ makes the relevant diagram commute, hence the assignment M ~— Fj; defines a
natural transformation.

We define:

G e hN*(M) — ﬁ(M)
f— ﬂf
by B¢(m,n) = f(m)(n), as f(m) € N*. This is also clearly A-linear, an defines a natural transformation.
We see that Fis o Gy sends f to fg,, which is the morphism given by fz,(m)(n) = y(m,n) = f(m)(n),

hence fz, = f, so F'oG = Idy,.. Similarly Gy o Fjy sends 8 to 3y,, which is the bilinear form given by
B(m,n) = fg(m)(n) = B(m,n), so Go F =1dg, implying the claim.

We also have an example of a similar phenomenon happening in the covariant case:

Example 2.4.4. The forgetful functor % : Ring — Set is represented by Z[z], by which we mean
RZl*l = 7 For any A € Ring we construct the following map:

Homping (Z[x], A) — F(A)
fr— fla)
which lies in the set A. This is a bijection because Z[z] is the free object on one generator in Ring, hence

each element in Hompging(Z[x], A) is determined precisely by where x is sent. The relevant diagram then
obviously commutes implying the natural isomorphism.

We end this section by briefly exploring the notion of universal objects and how this is related to the
representability of a functor. We provide no examples of this phenomenon, but this is extremely relevant
in the study of moduli spaces.

Definition 2.4.3. Let & : C — Set be a contravariant functor, then (X, ) is a universal object of
FifXeC e F(X),and forall Y € C, a € #(Y) there is a unique morphism f : Y — X such that

F(E) =a.
We now have prove the following:

Lemma 2.4.4. Let % : C — Set be a contravariant functor, then F is representable if and only if there
exists a universal object (X,€) of F.

Proof. Suppose that (X, &) is a universal object of .%, then we construct a natural isomorphism:
U:hy — F
on objects via:

Uy : Home (Y, X) — Z(Y)
fr—F(f)&)

By definition this is injective and surjective. Take g : Y — Z, and consider the following diagram:

Home (Y, X) — @y —s F(Y)

T T

hx(g) Z(9)

Hom(Z,X) — vz — F(Z)
For any f € Hom¢(Z, X), we have that going up and to the right gives:

F (hx (£))(&) = F(f 0 9)(E) = (F(g) o F(f))(€)

which is precisely going right and then up. It follows that hx = .% as desired.

Now suppose that .# = hx, and let ¥ : hy — % be the isomorphism. We set ¥x(Id) = &, and
claim that (X, ¢) is the universal object. Let Y € C, and a € .Z#(Y), then ¥y!(a) € Home(Y, X). The
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following diagram commutes:
Hom¢ (Y, X) — vy — Z(Y)

T T

hx (W5 (@) F (U (@)

Hom(X, X) «+—v'— F(X)

implying that:
F (U3 () = Uy o hx (V3! () o Uy

hence:

Clearly our choice of U3 () is unique, so (X, ¢) is a universal object.

Note that universal objects (X, ) are also clearly unique up to unique isomorphism.

2.5 Schemes are Functors and (Some) Functors are Schemes
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Properties of Schemes and their
Morphisms

3.1 Closed Embeddings

In this chapter we will broadly discuss some topological, and algebraic properties of schemes and sub-
schemes, along with their morphisms. Reader be warned: this chapter may feel like whiplash. Recall that
in Definition 1.3.7 we defined what an open embedding is; we now define a similar class of morphisms:

Definition 3.1.1. Let f : X — Y be a morphism of schemes, then f is a closed embedding’ if
f(X) C Y is closed, f is a homeomorphism onto it’s image, and f* : Oy — f.Ox is surjective.

Example 3.1.1. Let A be a ring and I C A be an ideal. We claim that the natural map g : Spec A/I —
Spec A induced by the projection map 7w : A — A/I is a closed embedding. First note that if p C A/
is a prime ideal, then we have that I C 7~ !(p). Indeed, we have that kerm = I, so 7=1(0) = I, and
77 10) C 7 1(p). It follows that we get a induced continuous map g : Spec A/I — V(I). However, we
have already shown in Proposition 2.1.3 that there is a homeomorphism f : V(I) — Spec A/I given by
p — m(p). We see that fog(p) =m(m"1(p)) =p, so fog=1d. We want to show that 7—(r(p)) = p as
well. Note that:

7 (w(p)) = {a € A:[a] € n(p)}

while:
m(p) ={la] € A/T:a € p}

If a € p, then clearly we have that [a] € 7(p) so a € 7~ 1(x(p)) implying that p C 7 1(n(p)). If
a € 7 (m(p)) then [a] € m(p), so a +i € p for some i € I. We have that I C p, so i € p, hence
a+i—1i=a €p, implying that 71 (m(p)) C p. It follows that go f(p) =7 (w(p)) =p so go f =1d as
well. We thus have that ¢ is a homeomorphism onto the closed subspace A/I.

We now check that the morphism ¢* : Ogspec a4 — g« Ospec A/1 18 surjective, and it suffices to check

that gg,h is surjective for every distinguished open Uy, as then the induced morphism on stalks will always
be surjective. Note that:

9«Ospec a/1(Un) = Ospec a/1(Upn)) = (A1) 1)
Note that that glﬁjh is given by:

g?}h tAp — (A/ D
a/h* — [a]/[1]*

which is clearly surjective so Spec A/I — Spec A is a closed embedding as desired.
With this example in mind, we wish to show that every closed embedding is locally of this form.

Lemma 3.1.1. Let f : X — Y be a morphism of schemes. Then f is a closed embedding if and only if
for every open affine U = Spec A C Y there exists an ideal I C A such that f~1(U) = Spec A/I C X,
and f|s-1 ) comes from the projection (up to isomorphism,).

40This is sometimes referred to in the literature as a closed immersion.
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Proof. Let f : X — Y be a closed immersion, and let Ix/y be the sheaf of ideals on Y given by ker froIf
U = Spec A C Y is an affine open then I = I,y (U) is an ideal of A and thus determines a closed subset
V(I) C U. Let V = f~1(U) then we have an induced morphism of schemes f|y : V — U which must be
a homeomorphism onto its image, so we simply need to show that f(V) = V(I). By Proposition 2.1.2, we
have this morphism of schemes is uniquely determined by the morphism (f \V)% c0y(U)=A— oy(V),
which we denote by 1 going forward. If € V, then we have that:

flv(z) = ¢~ (r; " (my))

where 7, is the morphism &y (V) — (Oy),. We have that I is the kernel of ¢, and so I C f(x) as
0 € m;1(m,) hence p=1(0) C Y~ (m 1 (x)). It follows that f|y : V — U has image in V(I). Now suppose
that p € V(I), we want to show that p € f(V); since f|y is a closed embedding, we have that the stalk
map:

(f1v)p = Ap — (F1v)«Ov)p

is surjective with kernel I,. If p ¢ f(V) then we clearly have that ((f|v)«Ov), is zero, implying that
I, = A,. However, I C p, so this means that m, = A, as I, C m,. This is clearly a contradiction, so we
have that if I C p then p € f(V) as desired. It follows that f|y : V — U is a homeomorphism onto V(I).

Note that V(I) = SpecA/I, so we can freely identify the two. Let g : V' — Spec A/I be the
homeomorphism induced by f|y : V' — U. We note that for all x € V', we have that f|y(z) = g(z). If
W C U is open, we have that W N'V(I) is open in Spec A/I, and we thus have that:

(ST W) = (FIRHW) 0 (Fv)7HVW) = FIH (W N V() = g7 (W N V(D))
It follows that for any open set Z = W NV(I) C V(I):

9:0v(2) = (flv)«Ov (W)

In particular, if U, is an affine open of Spec A, then:

9:0v(Upg) = (fIv)«Ov(Uy)

We thus define a morphism g* : Ospec A/1 — 9+Oy on a basis of affine opens by noting that for each U,
we have a morphism:

(f|V)§]g : Ag — g*ﬁV(U[g])

whose kernel is precisely I,. It follows that we get a unique morphism:

g[ﬁ][g] : ﬁSPCCA/I(U[QD = AQ/Ig — g*ﬁV(U[g])

which is trivially injective on each distinguished open. Moreover, these maps then clearly commute
with the restriction maps, since localization commutes with taking quotients, as we have shown earlier.
It follows that g% : Ospec A/1 — 9«0y is an injective morphism of sheaves, and is surjective on stalks
because (f|y)* is. Since it is injective and surjective on stalks, we have that g* is an isomorphism,
implying that f~1(U) = Spec A/I as schemes as desired. It follows that f|y- : V — U is now a morphism
of affine schemes Spec A/I — Spec A, such that the kernel of ¢ : A — A/I is precisely I, hence up to
isomorphism 1 is the projection map as desired.

Now suppose that for every affine open U = Spec A C Y we have that f~1(U) = Spec A/I, for
some ideal I. Then with V = f~}(U), we have that f|y : V — U is a morphism of affine schemes
Spec A/T — Spec A induced by the projection. By Example 3.1.1, we have that f|y is a a closed
immersion for all V. Since locally we have that f* comes from the projection, we have that the stalk
map (f%), : (Oy), — (feOx),, is surjective. It follows that f* is surjective by Proposition 1.2.8.
Moreover, since each f|y is a homeomorphism onto it’s image for all U, we have that f : X — Y must
also be a homeomorphism onto it’s image. Let {U;} be an open cover of Y, and V; = f~1(U;) then
F(X)NU; = flv,(V;) which is closed in U;. Tt follows that U; \ f|v, (Vi) is open in Y. We claim that:

Y\f(X)zuUi\fVi(V;)
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Indeed, suppose that y € Y\ f(X), then for all i, we have that there is no z € V; such that f|y,(z) = y.
It follows that y € U; \ flv;(V;) for all 4, hence Y \ f(X) C U, Ui \ flv;(Vi). Now suppose that:

yeUUi\fmvi)

then for all ¢ we have that there so no x such that f|y,(x) = y, hence there is no € X such that f(z) =y
soy € Y~ f(X) giving us the other inclusion. Since Y ~ f(X) is the union of open sets, it is open,
implying that f(X) is closed, f is a homeomorphism onto its image, and f* is surjective, hence f is a
closed embedding implying the claim. O

We have the following obvious corollaries:
Corollary 3.1.1. If X — Spec A is a closed embedding then X = A/I for some I.

Corollary 3.1.2. A morphism f : X — Y is a closed embedding if and only if there exists an affine
cover {U;} of Y such that f|p-1y,) : f~1(U;) = Us is a closed embedding.

We can properly define closed subschemes now:

Definition 3.1.2. Let X be a scheme, then a closed subscheme of X is an equivalence class of closed
immersions f : Z — X, where two closed immersions f and g are equivalent if and only if there is an
isomorphism F': Z — Z such that fo F =g.

The clunky nature of the definition of above can be best explained by noting that for X = Spec Clz],
we have that V(z) = V(2?) as \/(22) = /z, but SpecClx]/ (x) % SpecC[z]/(z?). So even though the
two topological spaces agree, and both are the same from a topological embedding point of view, the two
closed subschemes are not isomorphic. In particular, there are a multitude of scheme structures one can
put on a closed subspace of any scheme X, with the induced reduced subscheme structure being just one
of many.

Example 3.1.2. Let X = Proj A for a graded ring A, and Z a closed subscheme of X. Furthermore,
suppose that the irrelevant ideal satisfies™':

Ay =91y, 9n) (3.1.1)

for some g; € Aﬂ‘_om. Note that this condition is equivalent to Proj A being quasi-compact; indeed, suppose
that Proj A is quasi-compact then there clearly exists a finite covering of X by projective distinguished
opens {Uy, }. Since V(A ) = (), we have that:

V(Ay) = (UU> = ﬂV(<gi>) =V({{g1,---,9n))

so (3.1.1) follows immediately. Now suppose that (3.1.1) holds, then X is equal to the union of Uy,, which
is finite, hence X is a finite union of quasi-compact schemes and is thus quasi-compact*?.

With the quasi-compactness assumption on X, we wish to show that Z is of the form Proj A/I for
some homogenous ideal I C A. Supposing (2.4.1), we have an open cover of X given by {U,,}, and
thus we obtain a finite open cover of Z by {V; = f~'(U,,)}. Since f is a closed embedding, each
Vi = Spec(Ay, )o/1;; our goal is to construct I out of these I;. Let m; = deg g;, for each i, and define:

{0} if m;1d
Ji»d = d/m; .
{a € Aq:a/g, eL} ifm;|d

3

Note that deg(a/gd/mi) =d—d/m;-m; =0, so a/g‘vi/m"' € (Ag,)o. We set:

Ji =P Ji
d

4INote that Ay is radical, as if f € /A, then for some n, f* € Ay. If f has a degree zero part then f™ has a degree
zero part hence f™ ¢ A4. It follows that f is a sum of positively graded elements, and thus f € A4 .

421n general topology this is the same as say if X is a finite union of compact spaces then X is compact. This setting
just feels weird as for Hausdorff spaces compact sets are closed.




3.1. CLOSED EMBEDDINGS 155

It is clear that J; is a homogenous ideal for each i, hence we set:

We want to show that f(Z) = V(I), and it suffices to show that f|y,(V;) = V(I) N Uy, for all 4. If
mi + A — Ay, is the localization map, and ¢; : (Ag,)o = A, is the inclusion, then we set:

(Ig)o = 47" ({mi(1)))

¢ 1 (V((I4,)0)) C U,,. Let p € V(I) N Uy, then p is a homogenous prime ideal such that I C p, and
g; ¢ p. Since p € Uy,, we have that ¢(p) = (pg,)o C (Ag,)o. Since I C p, we have that I, C p,,, hence
(Igi)o - (pgi)()v S0 p € (b_l(V((IQi)O))

Now suppose that p € ¢~1(V(I,,)o) C Uy,, then p € U,, vacuously, so we need to show that p € V(I).
By definition, (Iy,)o C (pg,)o; in Ay, we have that (pg,)o corresponds to \/(pg,)oAs, so we have that

VT4 )oAs C \/(pg;)oAs as well. It thus suffices to show that I C ;! (\/(Igi)oAf), as then:

Icn! ( (Igi)oAf) cmt ( (Pgi)OAf> =p

Furthermore, as I is homogenous, we need only check that every homogenous element of I lies in

! ( (Igi)oAf). Let a € I be homogenous of degree d; if a € kerm; then we are done, otherwise, we

have that a™:/gd € (I,,)o. It follows that a™i /1 € (I,,)o, hence a™i /1 € (I,,)0Ay, so a/1 € /(I )oAf
by definition™?.

It now suffices to show that f|v,(Vi) = ¢~1(V(,,)). Since fl|v,(Vi) C U,,, we have that f|y, is a
homeomorphism onto the closed subset V(I;) C Spec(Ay,)o. Therefore, it suffices to check that V(I;) =
V((I4,)0), and in particular that I; = (Ig,)o for all i. Now note that the only elements in A, which
have degree zero are those of the form a/¢?* where a is homogenous and satisfying dega = n - m;. Let
a/gl € (Iy,)o, then a/gl € I,,, so a/1 € I, as well. It follows that @ € I N A,,.,,,,, hence a/g}" € I; for all
i, 50 (I4,)0 C I; as desired.

Now let a/g} € I;, and | = lem(my, ..., m,). We have that there exists a k < r € N such that:

n=k-l+r=n+k-r)=(k+1)

k=r/gk=r+7 we may assume that [ divides n. Since ker f* is a sheaf of ideals, if

so by taking a/¢?" = ag
I;; = ker f[n]gingj, we have that a|Ugingj € I;j. Recall that Uy, NU,, = Uy,4, = Spec(Ag, 4, )o, hence we

have that:
a/g"lu,,nu,, = agi /(9i9;)" € Lij C (Ag.g;)o
Moreover, we also have that
Ugug; = Spec((Ag;Jo)n

where h = g;'“ /g;". The ring homomorphism

fh

9q

: (Agi)o = (Ag,)o/Li

determines a morphism of affine schemes which on all distinguished opens of Spec(Ay,)o of the form
Uy, has kernel given by (I;),. The morphism determined by f(u]i must agree with f on all open subsets
of Uy,, hence we have that I;; is naturally isomorphic to the ideal (I;)p, via the unique isomorphism
((Ag)o)n = (Ag,g,)o from Lemma 2.2.7. Similarly, with h=" = ;"' /g7, we must have that (I;),-1 is
naturally isomorphic to [;; via the same isomorphism. Any element in (I;),-: can be written as:

b g -
Ly ( m) (312)
9j 9j

43Note that we have now shown that for any homogenous ideal I, V(I) N Uy = V((I)o) C Uy
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where b/g;? € I;. Recall that we took n to be divisible by [, so n = m; - p and n = m; - ¢ for some p and
g. Hence, under the isomorphism (I;), = (I;),-1 we have that:

-1
a a g
m;j-q miq mi-q
9 9j 9;

So for an element of the form (3.1.2) we must have that:

" —1 ms\ —€
a a g _ b g; "’
mjq ? g miq - 7k m;
9; 9; 9; 9j 9;

We thus have that by the definition of localization we have that:

ms;-e

_9 - a4
mi-et+mi-q
J

el

We can take e large enough so that e;» = mj; - e is divisible by I, hence we can write that:

e
g;"a
g§€’+n)'(mi/m1)

el

Do this for all j, and let ¢/ = max(e},...,e.,), then g¢a € J; for all j. It follows that ¢¢ a € I, hence:

9¢a
1

€ 1,

so a/l € I,,, giving us that a/g™ € (Iy,)o. It follows that I; = (I,,)o so f(Z) = V(I) as desired.

We now show that V(I) is homeomorphic to Proj A/I. Let = : A — A/I be the projection map, where
A/I has the induced grading, and p € Proj A/I. The prime ideal 7~!(p) is homogenous, as if a € 7= 1(p)
then we write a as:

a=> ag (3.1.3)
d

where ag € Ag. It follows that 7(a) € p, and since p is homogenous each 7(aq) is in p so each ag € T771(p).
Each 7~!(p) contains I so this defines a map F : Proj A/I — V(I). Via the bijection between prime
ideals of A/I and prime ideals of A containing I it follows that this map is a bijection, so it suffices to
check that this is continuous and open.

We can do this on the distinguished basis for Proj A/I and the basis {V(I)N Ug}geAlj’m for V(I). Let
Uy be the projective distinguished open in Proj A, then

P V() NU,) = F-' (VD) N F~(U,) = F~\(U,)

I claim that this is equal to Uy, Suppose [g] ¢ p C A/I, then for all i € I we must have that g+i ¢ 7' (p)
hence g ¢ n=*(p). It follows that p € Uy so Uy, C U,. Now let p € f~1(Uy), then g ¢ 7~ '(p), but this
implies that [g] ¢ w(7~"(p)) = p so p € Uyy). Therefore f~1(U,) = Uy, and f is continuous.

To show that F' is open we claim that F((Upg)) = V(I)NUy, but this is now clear as F' : Proj A/I — V(I)
is bijective, so since F~1(V(I)NU,) = Upy we get that F(F~H(V(I)NUy) = V(I)NU, = Uy Tt follows
that f is a continuous open bijective map and thus a homeomorphism.

Now note that the structure sheaf Op,q; 4/ satisfies:
Oprojay1(Upg) = ((A/1)g))o
However, recall that there is a unique surjective homomorphism

Ag — (A/I)[g]
a/g" — [a]/[g]*
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which commutes with localization maps, and clearly preserves grading. It follows, that we have a unique
surjective homomorphism commuting with the isomorphisms from Lemma 2.2.7:

(Ag)o — ((A/1)g))o
a/g* — [a]/[g]"

where deg a = k-deg g. Note that clearly (I,)o maps to zero under this map, so we have unique surjective
homomorphism:

¢+ (Ag)o/(Ig)o — ((A/D)g)o
[a/g"] — [a]/[g]*

Now suppose that ¢([a/g*]) = 0, then we have that [a]/[g]" = 0 € ((A/I)[g))0 C (A/I)[y. It follows
that there an M such that [¢M -a] = 0 € A/I, hence g™a € I. We thus have that ¢™a/1 € I, so
gMa/gM+k = a/gk € (I,)o. By the naturality’’ of these isomorphisms it follows that up to a unique
sheaf isomorphism:

Oproj a/1(Ug) = (Ag)o/(Ig)o

Now equip V(I) with the sheaf 0y(;) = F.Op.oj a/1, and note that this endows V(I) with the structure
of a scheme isomorphic to Proj A/I"".

Let f be restriction of the codomain to V(I). In particular, we have that:

f:zZ— v

Since I; = (14, )0, we define a sheaf morphism on the open cover {V(I) N Uy, } as the identity map:

fsﬁr(j)ngi 2Oy (V) NUg,) = (Ag,)o/ (g, )o — Oz(Vi) = (Ag,)o/1i

~ ~

These then agrees on overlaps Uy, N Uy, as ((Iy,)o)n = 1ij = ((Ig;)o)p—1 via the natural isomorphisms

i

which glue Proj A together. It follows that this defines a sheaf isomorphism:
f‘?i : ﬁV(I) — Oy

hence (f, f*) determines a scheme isomorphism Z — V(I). Since V(I) 2 Proj A/I as schemes, we thus
have that Z = Proj A/I as desired.

Now note that the condition that the condtion that Proj A be quasi-compact is extremely necessary.
Indeed take:

2 = Proj k[z1, 22, .. .]
for any field k. Let:

(oo}
Z = HXi = Speck[z1 /i, o /i, . B )i, )1 i 2o fThy B gy )

i=1
where the ideal:
<£L'1/£L'i,l'2/1’i, - ,:f?i/l‘i7 . >Z

is generated by all ith fold products of (x1/z;,x2/x;,...,4%/x;,...). Note that each scheme is is a
singleton set as

\/<l‘1/.’L‘i,.’L‘2/.’Ei,...,i‘i/.’lﬁi,...>i = <.%‘1/.’1?i7.’1?2/.’1?¢,...,.f,‘i/xi,...>

44Note that (Ag)o/(Ig)o does not depend on the class representative g, as for any homogeneous i of degree equal to g,
la/(g +)*] = [a/g"].

45This is not the reduced scheme structure, rather one induced by the sheaf of ideals determined by T itself. If V(I) was
equipped with the reduced structure, then as schemes V(I) 2 Proj A/v/T.
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Denote each point by 0 € X; C Z , and define a closed embedding by:
f:Z— Py
0 —1[0,...,0,1,0...,0,...]

where the 1 is in the ith position. If we take the homogenous ideal I = (x;x; : i # j), then clearly for all
k:

(Imk)o = <£U1/£L‘k71'2,$k,...ﬁk/$k7...7>

So under the identification V(I) N Uy, = V((I,)) C Uy,, we discern that V(I) N U, contains only the

k3

point [0,...,0,1,0...,0,...], where the 1 is again in the ith position. Clearly we then have that for all
U.,, f(Z)NU,, =V({I)NU,,, hence f(Z) =V(I), and f has closed image.
We set:
L; = <.’E1/.’E7;,.’E2/.’Ei, e 7£z/xl>z

and define a sheaf morphism on the affine open cover {Uy, }$2; via the canonical projections:

Fh,, kel fe 3y ] — k)52 el /T
g — 9]

and note that there is nothing to glue as f~1(U,, N Us+j) is the empty set. This sheaf homomorphism
is clearly surjective on stalks so Z < IP?° is a closed embedding.

We claim that there is no homogenous ideal I such that Z = Proj A/I. Indeed, suppose there was.
Then by the work above we would have that for all x;,

(Iﬂ)o =1

Let f € I be homogenous of degree d, then f/1 € I,,, and f/x¢ € (I,,)o"". For the above to be true, we
must then have that f/z¢ € I; for all i as well. However, if k > d, then f/ :z:g cannot lie in I as every
element must a be a sum of at least k-fold product of elements of the form x;/x, while f /xi can only
be a sum of d-fold products of said elements. It follows that for some k& we must have that:

(Iz;)o € Ix

implying that Z 2 Proj A/I for any homogenous ideal I.
With the above example in mind, we can classify all projective schemes over some fixed ring B:

Theorem 3.1.1. X is a projective scheme over B if and only if it is a closed subscheme of P for some
n.

Proof. Suppose that X is a projective scheme over B, then by Definition 2.2.7, we have that:
X =ProjA

where A is a graded ring, satisfying Ay = B, and is finitely generated as a B algebra. Since A is finitely
generated in degree one, for some n there is a surjection:

¢: Blxg,...,x,] > A

which preserves grading. It follows that ker ¢ is a homogenous ideal, and that A & Blxy,...,xz,]/ ker ¢,
hence:

X = Proj(Blzo, . .. x,]/ ker ¢)

As a scheme, X is canonically isomorphic to V(ker ¢) C P57, hence X determines a closed subscheme
of P.

46Note that f/ z;.i and not be zero as k is a field, so localization maps are injective.
47Note that V(ker ¢) is not necessarily equipped with the reduced subscheme structure, but instead equipped with scheme
structure determined by the sheaf of ideals induced by ker ¢p. This only coincides with the reduced structure if ker ¢ satisfies

v/ ker ¢ = ker ¢.
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If X is a closed subscheme of P%, then since P} is quasicompact, we have that by Example 3.1.2
X 2 Proj Blzo,...,2zn]/I for some homogenous ideal I. If I contains the irrelevant ideal, then X is
the empty scheme and thus isomorphic to Proj B, where B has the trivial grading, so X is trivially a
projective B scheme. If I does not contain the irrelevant ideal, then Blxo,...,z,]/I is a graded, finitely
generated in degree one, B-algebra, hence X is projective B scheme as desired. O

Example 3.1.3. Recall from FExample 2.3.4 that locally the morphism:
f P& xc P — P
is given by scheme morphisms:
Uz, xc Uy, — Uy,

The U,, cover P, and f~'(U,,) = Uy, xc U,,. We claim that this morphism is a closed embedding,

and by Corollary 3.1.2 it suffices to check that each U,, x¢c U,, — U, is a closed embedding. By

Corollary 3.1.2, it suffices to check that U,, x¢ U, = SpecC[{vg/v;}ri]/I for some ideal I. We check
this in case of ¢ = 0. Note that the morphism of affine schemes comes from the ring homomorphism:
oo : Cluy /v, v2 /vg, v3/v0] — Cla1/%0,Y1/Y0]
x1/x0 ifi=1
v; /v — < Y1/Y0 ifi=2
(x1/20) - (y1/y0) ifi=3

This is clearly surjective, hence Clxy/x0,y1/y0] = Clv1/vg, v2/vg, v3/v0]/ ker ¢, and it follows that the
induced morphism is a closed embedding. The kernel of this homomorphism is:

I = <1)1/1}0'U2/U0 —U3/’U0>

and so the homogenous ideal cutting out f(PE xc PL) is given by J = (vivg — v3vg). It follows that as
schemes,

P¢ x¢ P 2 Proj Clvg, v1, v2, v3)/ (v1v2 — v300)

Example 3.1.4. Let Z C X be a closed subset of a scheme X, and equip Z with the induced reduced
closed subscheme structure, then we have that the inclusion map ¢ : Z — X is a homeomorphism onto
its image. We want to define a sheaf morphism ¢f : @x — 1,07. Recall that if I, /x is the sheaf of ideals
associated to the closed subset Z then €, = =10 /T Z/X- As the next proposition shows we have that
there is a canonical morphism:

ﬁX/IZ/X — L*Lilﬁx/lz/x

which is surjective. There is a surjective morphism 0x — Ox /Iz,x, so we define i* to the be composition
of these sheaf morphisms. It follows that (¢,:*) is a closed embedding as desired.

We now go to our next result regarding closed embeddings which is an analogue of Lemma 2.3.7:

Lemma 3.1.2. Let f : X — Z be a closed embedding, and let g : Y — Z be any morphism. Then the
base change X Xz Y — Y is also a closed embedding.

Proof. We have the following Cartesian square:

XXZyiﬂ'Y;) Y
& |
l l
X f—— Z

Let {U; = Spec A;} be an affine open cover of Z, and choose an affine open cover {V;; = Spec B;;} of Y
such that g(V;;) C U;. Note that f~1(U;) = Spec A; /I; for some ideal I;. We have that:

7wy (Vij) 2 X xz Vij
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We claim that this is isomorphic to f~1(U;) xy, Vi. Indeed, we need to show that the following diagram
is cartesian:

fﬁl(Ui) Xy, V, — vy — V;'j

TXOL 9|Vij
| |
X f A

where ¢« : f71(U;) — X is the inclusion, is Cartesian. Let @ be any scheme with maps px : Q@ — X
and py;,, : Q — Vj; which make the relevant diagram commute. Since g(V;;) C U;, we have that
gopv,,(Q) C U;. Since fopx = gopy,,, we have that fopx(Q) C U; as well, and thus px (Q) C f~*(U;).
Since X x z V;; is a fibre product we have a unique morphism ¢ : QQ =+ X x z V;; such that 1x oro¢p = px.
We thus have that 7x o0 ¢(Q) = px(Q) C f~H(U;). We see that (mx o)~ L(f~H(U;)) C f~HU;) xz Vi,
hence ¢(Q) C px(Q). Since both f(f~1(U;)) C U;, and g(Vi;) C U;, we have that this f~1(U;) xz Vi; =
F7HU;) xu, Vij, and it follows that ¢(Q) C f~1(U;) xu, Vij, so ¢ factors uniquely through the open
embedding f~1(U;) xy, Vij — X x z Vi, and we have a unique morphism Q — f~1(U;) Xy, Vi;. It follows
that f=H(U;) xu, Vij = f1(U;) xu, Vij as desired. We thus have the following chain of isomorphisms:

my! (Vij) =X %z Vi
=fHU;) @u, Vi
= Spec A;/I; ® a, Spec B;;
= Spec AZ/I,L ®Ai Bij

Let ¢ : A; — B;; be the ring homomorphism making B;; an A; algebra, and set J = (¢(I;)), then we
have that:

A;J1; @4, Bij = By;/J
hence:
7y (V;) = Spec By;/J
somy : X Xz Y — Y is a closed embedding by Corollary 3.1.2. O

These two lemmas each provide an example of classes of morphisms we are about to study, namely
being local on target and stable under base change. More precisely, let f : X — Z be a morphism of
schemes and P a property morphisms of schemes, then P is local on target if for any affine cover of {U;}
of Z such that f|s-1 (v, : f~YU;) = Z satisfies P for all i we have that f satisfies P, and if f: X — Y
satisfies P, then for all affine opens U, f[;-1(y) satisfies P as well. In other words, a property of a
morphism of schemes is called local on target if it can be checked affine locally. Let g : Y — Z be any
other morphism of schemes, and let f : X — Z be a morphism satisfying P, then P is stable under base
change if X xz Y — Y also satisfies the property.

3.2 Reduced, Irreducible, and Integral Schemes

In the following sections, we will study some algebraic and topological properties schemes may have, and
the interplay between them. We begin with the following definition:

Definition 3.2.1. Let X be a scheme, then X is irreducible if it is irreducible as a topological space
as in Definition 1.4.3. We also have that X is reduced if €x(U) has no nilpotents for all U C X, and
is integral if Ox(U) is an integral domain for all U C X.

We first check that being reduced is an inherently local property.
Lemma 3.2.1. Let X be a scheme, then the following are equivalent:

a) X is reduced

b) There exists an affine open cover {U;} such that each U; is reduced

¢) Every stalk (Ox), is reduced
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Proof. Clearly a = b, so we first show that b = ¢. Let x € U; = Spec A, then (Ox), = A, so it suffices
to check that A, has no nilpotents. Let a/g € A, where g,h ¢ p. Then if (a/g)* = 0 for some k there
exists a ¢ € A — p such that:

c-ad"=0

We see that ¢ # 0, so since A has not nilpotents we have that either a = 0 hence a/g = 0, implying the
claim.

Now we show that ¢ = a. Let U be an open set of X, and s € Ox (U) such that s* = 0 for some k.
Then for every z € U we have that (s¥), = s* = 0 implying that s, = 0 for all s. However, the map:

Ox(U) — [](0x)a

zeU

is injective so s = 0, hence @x (U) has no nilpotents. O

Example 3.2.1. Let X be a scheme, and Y a closed subset of X, then Y equipped with the induced
reduced closed subscheme structure is irreducible. Indeed, let {U; = Spec A} be an affine open cover of
X, then U; NY = Spec 4,/I; determines an affine open cover of Y. Each I, is radical, hence we have
that if [a] € A;/I; satisfies [a]® = O then a* € I;, implying that a € I;. It follows that [a] = 0, so
A;/1; is reduced. We thus have an affine open cover of Y such that each affine scheme is reduced, so by
Lemma 3.2.1 we have that Y is reduced as well.

We now show some properties of X being irreducible. We need the following definition:

Definition 3.2.2. Let X be a topological space, then a generic point is a point n € X which is dense,
ie. {n}=X.

Lemma 3.2.2. Let X be an irreducible topological space, then every mon empty open subset of X is
irreducible when equipped with the subspace topology. Moreover, a topological space is irreducible if and
only if the intersection of every two non empty open sets is non empty.

Proof. Suppose that X is irreducible, then by Lemma 1.4.4 we have that X is connected and every open
subset of X is dense. Let U be a non empty open subset of X, then we claim that U is irreducible when
equipped with the subspace topology. Indeed, suppose that U = Y7 U Y5 for two proper closed subsets of
U. Then Y7 = Z;NU and Yo = Z>NU, then we have that U = (Z; U Z3) NU, implying that U C Z; U Z5
hence U is contained in the closed subset Z; U Z5. However, U=X , 80 X = 71 U Zs implying that X is
reducible. The claim follows from the contrapositive.

Now let U and V be two nonempty open subsets of X such that UNV = . Then U°UV® = X, so
X is reducible. By the contrapositive we have that if X is irreducible then U NV # ().

Suppose that U NV # () for every open set, and let Z;, Zo C X be two proper closed subsets. We see
that since Z{ N Z§ # () that Zy U Z3 # X, so X is irreducible O

Lemma 3.2.3. Let X be a scheme, then X is irreducible if and only if X has unique generic point 7).

Proof. Suppose that X is reducible, then X = Z; U Z; for two closed proper subsets of X. It follows that
every x € X lies in Z; or Zs so the closure of every point is contained in Z; or Z;. We thus have that
X has no generic points, let alone a unique one. By the contrapositive, we have that if X has a unique
generic point, then X is irreducible.

Now let X be irreducible, by Lemma 3.2.2 we have that U = Spec A is a irreducible topological space
as well. We claim that the nilradical:

I={acA:3keNd =0}

is prime. Let f,g € A then if f,g € I we have that Uy = Uy = Uy = ) and similarly for g. Similarly,
if Uy = Up then there is some k such that f¥ = 0 so we have that a distinguished open is empty if and
only if the element lies in I. Now suppose that Uy N Uy is not empty, the fact that Ur N U, is not empty
implies that fg ¢ I. It follows by the contrapositive that if fg € I then either f or g are in I so I is
prime. The closure of the singleton set {I} € Spec A is given by V(I) and we claim that this is equal to
Spec A. We need only show that I C p for any prime in A, however this is clear as 0 € p, and for any
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f € I we have that f* =0 € p, hence f € p, so I C p. We show that I is unique, suppose that q is prime,
and satisfies q C p for every prime. Then V(q) = Spec A, so q = /9 = VI = I implying uniqueness.

We now claim that the point € X corresponding to I € Spec A is actually a generic point of X.
Indeed, suppose that {x} = V for some closed subset of X, then we have that:

v=1~%

Z3x

where Z C X is closed. In the subspace topology, since z is a generic point, we have that:

U= Y

Yoz

where Y C U is closed. The subsets of U which are closed are of the form Z NU where Z is closed in X,
hence we have that:

U=()2ZnU=vnU

Z>x

hence U C V. However, the only closed set of X which contains U is X itself, so V = X and {z} is
generic.

To show uniqueness, note that = lies in every open set of U C X, as other wise, x € U®, which is closed
and thus contradicts the fact that {z} is dense. Now suppose that U is any open affine, and y € X is a
generic point not equal to x. Then y is clearly a generic point of every open affine, so y,z € U are both
generic points. But then x = y as every irreducible affine scheme only has one generic point, implying
the claim. O

Note that if the nilradical of a ring A is prime then its vanishing locus is the whole of Spec A, so
Spec A contains a generic point, and is thus irreducible. In particular, Spec A is irreducible if and only if
the nilradical is prime.

Lemma 3.2.4. Let X be a scheme, which is not the empty scheme. Then the following are equivalent:
a) X is irreducible

b) There exists an affine open covering {U;} of X such that U; is irreducible for all i, and U;NU; # 0
for alli and j.

¢) Every nonempty open affine U C X is irreducible.

Proof. Note that Lemma 3.2.2 implies that a = b, c. We show that b = a. Suppose that X = Z,UZ5, then
we have that since each U is irreducible U; C Z7 or Zs. Indeed suppose otherwise, then U; N (Z; U Zs) =
(U; N Zy) U (U; N Zy) which are both closed in the subspace topology, thus U; N Z; must equal Z; for at
least one j. Without loss of generality suppose that U; C Z; and take any other U;. Then U; N Uj is
non empty and in dense in U;. Since U; C Z7, we have that U; NU; C Z; N Uj, which is closed in U;. It
follows that the closure of U; N Uj is contained in Z7, thus U; C Z;. We thus have that JU; = X C Z3,
so X = Zj, implying that X is irreducible.

For ¢ = a, let U NV be empty for some open affines, then U UV is affine as it is trivially a disjoint
union, and thus the coproduct in the category of schemes, and finite coproducts of affine schemes are
affine by Example 2.1.3. However, irreducible spaces are connected, and U UV is an affine open so is not
irreducible contradicting c. It follows that the intersection of every open affine is non trivial, and since
the open affines generate the topology on X we must have that the intersection of every open set is non
empty, thus by Lemma 3.2.2 we have that X is irreducible. O

Example 3.2.2. Note that any disconnected scheme is not irreducible, we now give an example of a
connected but reducible scheme. We first note that an affine scheme Spec A is connected if and only if it
only has no nontrivial idempotents. Indeed, suppose that A has a nontrivial idempotent a, then a-a = a.
Note that (a) + (1 — a) = A, implying that

V(ie)NV(1l —a)=V(1)=10
Since {a) and (1 — a) are coprime, we have that (a) N ({1 —a) = (a) - (1 — a) = (0). We thus have that:
V(a) UV(1 —a) = V(0) = Spec A
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But this then implies that V(a)¢ = V(1 — a), so we have that Spec A is the union of two open disjoint
sets, and thus disconnected. It follows by the contrapositive that if Spec A is connected, then there are
no nontrivial idempotents.

Now suppose Spec A is disconnected, then there exist open sets such that UNV =0, and UUV =
Spec A. It follows that U and V are both also closed so U = V(I) and V = V(J) for two radical ideals I
and J. Now we have that I +.J = A, and I N J = {0} so by the Chinese remainder theorem there is an
isomorphism:

A= AJI x AT

It follows that A is a product of two rings A/I and A/J so Spec A is the disjoint union of two affine
schemes. It follows that (1,0) is a nontrivial idempotent of A, hence disconnected and affine implies the
existence of an idempotent, and the claim follows from contradiction.

We thus wish to find a ring with no nontrivial idempotents and a nilradical which is not prime*®.
Consider Z[z]/ (2x), then the nilradical contains [0] but [2]-[x] = 0 so the nilradical is not prime. It follows
that SpecZ[z]/ (2z) is reducible, but there are no non trivial idempotents. Indeed, if [p] € Z[x]/ (2z)
satisfies [p]? = [p] then we have that p?> — p € (2z), but the only way this can be true if p? — p is divisible
by 2z or is just actually equal to zero. This is only satisfied if [p] = 0 or if p = 1, hence [p] = 1. It follows
that Z[x]/ (22) has no non trivial idempotents, and is thus connected but not irreducible.

We now turn to proving results regarding integral schemes. We have our first theorem of the section:

Theorem 3.2.1. Let X be a scheme, then X is integral if and only if it is reduced and irreducible.

Proof. Suppose that X is integral, then X is automatically reduced. Moreover, every open affine of X
corresponds to Spec A where A is an integral domain, so every open affine is irreducible by Lemma 1.4.5.
It follows by Lemma 3.2.4 that X is irreducible as well.

Now suppose that X is irreducible and reduced, then every open affine is irreducible and reduced, so
we have that for each affine open Spec A, A is an integral domain. Indeed, this implies that the generic
point of A is the zero ideal, hence {0} is a prime ideal implying that A is an integral domain. We now claim
that the restriction map Ox (U) — Ox (V) is injective whenever V' is an open affine contained in U. Note
that if V' C U is an open affine, then V is an open affine in X and is thus an integral scheme. Furthermore,
for any affine scheme Spec A where A is an integral domain, the restriction maps A — Ogpec 4(U) are
injective, as for any cover of U by distinguished opens the localization maps A — A, are injective. It
follows that if f € A satisfies f|y = 0, then f|y, = 0 so f = 0 as well. Now let W be an affine scheme
such that W C U, then f|wny = 0 but this implies that f|lyw =0, as flwnv = flw|wnv = 0. It follows
that if {W;,V} is an open cover of U by affine schemes such that f|y = 0 for then f|w, = 0 for all ¢ as
well. We thus have that f =0 € Ox(U) by sheaf axiom one. It follows that x(U) can be identified as
a subring of the integral domain @x (V), hence Ox(U) is an integral domain implying the claim. O

We now have the obvious corollary:
Corollary 3.2.1. Let X be a scheme, then the following are equivalent:
a) X is integral
b) There exists an affine cover {U;} of X such that U; NU; # (0 and U; is integral for all i.
¢) Every open affine U C X is integral
Proof. We have that a = b as if X is integral then X is irreducible by Theorem 3.2.1, so there exists an

affine open cover of X such that each U; is irreducible and U; NU; # (). Since every affine open is reduced
we have the claim by Theorem 3.2.1 as well.

For a = ¢, we see that every open set Ox(U) is an integral domain, so if U = Spec A is integral,
we have that Ox(U) = A is an integral domain implying that Spec A irreducible by Lemma 1.4.5.
Every affine open of U is reduced, so U is reduced, and irreducible implying that U is integral again by
Theorem 3.2.1.

For b = a, note that each U; is reduced and irreducible by Theorem 3.2.1, so by Lemma 3.2.4 we have
that X irreducible, and by Lemma 3.2.1 we have that X is reduced. By Theorem 3.2.1, X is integral.

For ¢ = a,the same argument holds. O

48 As by the affine case in Lemma 3.2.3, if the nilradical is not prime then X is not irreducible.
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Example 3.2.3. We claim that P7 is integral if A is integral domain. Indeed, we have an affine open
cover by:

U, = A[{wj/3i} 2]
such that Uy, NU, = Uy,u; # (. Each of these is integral, so we have that P7 is integral as well.

Proposition 3.2.1. Let X and Y be integral schemes over an algebraically closed field k. If X is locally
of finite type then X X Y s an integral scheme.

Proof. 1t suffices to prove that for any affine opens U = Spec A C X and V = Spec B C Y, that A ®; B
is an integral domain. We first claim that the natural map:

A— H A/m

me| Spec A|
is injective. Indeed, we can write A = k[xq,...,2,]/I for some prime ideal I, and some n € N. The
maximal ideals of A are then precisely the maximal ideals of k[z1,...,x,] such that I C m. Suppose

that [f] € A= (Om) € [ e spec 4| A/m. Then we have that f € m for every I C m. By Hilbert’s strong

Nullstellensatz we have that there exists a k such that f* € I, but since I is prime we have that f € I
hence [f] = 0.

Now note that for every m € |Spec A|, we have that A/m = k as k is algebraically closed. For each
m, let ¢, be the unique isomorphism A — k with kernel m, then we have the following chain of maps:

A®rB— A/m®, B— B
given on simple tensors by:
a®br— on([a]) b
Let:

x:Zaié@bi and y:Zci®di

be such that x -y = 0. By the bilinearity of the tensor product, and the fact that A and B are both
vector spaces, we can take {b;} and {d;} to be linearly independent sets over k. We see that for every
m € | Spec Al:

z -y — (dm([ai])bi) - (dm([ci)]di) =0
Since B is an integral domain, we have that it follows that either:
(Pm([a:])bi) =0 or  (¢m([c:])di) =0

Suppose the first summation is zero, then since {b;} is linearly independent, we have that ¢y ([a;]) =0
for all a;. This implies that each a; € m for all m. By the injectivity of the map A; — [] Am, it follows
that each a; = 0 € A, hence:

xr = Z 0®b; =0

The same argument demonstrates that if the second sum is equal to zero, then y = 0, thus if z -y = 0,
we have that either z = 0 or y = 0 so A ®; B is an integral domain. O

3.3 Normal Schemes

Recall that if A is an integral domain, and n = (0) is the zero ideal, then A, = Frac(A), that is the
localization at the zero prime ideal is the field of fractions. This can be seen easily by noting that a),
A, is easily seen to be a field, and b), that the constructions of Frac(A) is identical to A,. Further recall
that if A C B, then B is an A algebra, and we say that b € B is integral over A, if there exists a monic
polynomial p € A[x] such that p(b) = 0. We set the integral closure of A to be:

A ={bec B:bis integral over A}

We now have the following definition:
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Definition 3.3.1. Let A be an integral domain, then A is an integrally closed domain if A = A,
where A is being viewed as a subring of Frac(A)"’.
We have the following example:

Example 3.3.1. The integers are an integrally closed domain. Indeed, note that FracZ = Q, clearly
Z C 7 as for any element in a € Z we have that  — a has a a root. Now let a/b € Z, such that a and b
have greatest common divisor equal to 1. Then their must exist some monic polynomial:

p(x) =2 +ap 12"+ Farz+ao
with a; € Z, such that p(a/b) = 0. It follows that:
a"/b" + an,_1a" 0" 4 aga/b+ag =0
Multiplying throughout by b" we obtain that:
a4 ap_1a" "+ cagab” "t 4+ agh” =0

however, since a,_1a""'b + ---a;ab™ "' + agb™ is divisible by b, we must have that a” is divisible by
b. Since a and b both have unique factorizations into primes, it follows that a is divisible by b, a clear
contradiction, implying the claim.

As a counter example, take C[z,y]/ (2% — y*). We first claim that this ring is isomorphic to C[t?,#3].
Indeed, consider the ring homomorphism Clz,y] — C[t?,¢%] given by x + t3 and y + 2, then we see
that 22 — y® — % — t6 = 0, so there is a unique ring homomorphism given by [x] + t3 and [y] — t2. We
define an inverse by sending t3 — x and t? — y, and composing with the projection. This is easily seen to
be an isomorphism, and C[t2, 3] is obviously an integral domain. It’s field of fractions is the localization
at the zero ideal, which contains C[t,t71], as t> - t73 =t~ and 3 - t~2 = t. However, t is integral over
C[t?,t] as it is the root of the polynomial (C[t?,t3])[a] given by o? — t2.

We now develop a scheme theoretic analogue of the above construction:

Definition 3.3.2. Let X be a scheme, then X is normal if for all z € X, the stalk (Ox), is an integrally
closed domain.

We have the following (non)examples:

Example 3.3.2. We claim that P{ is a normal scheme. Indeed, the U; = Spec(Clzo, ..., Zn]s,)o cover
IPZ, so suppose x € U;. Then z corresponds to a prime ideal p of the ring C[{x;/x;};»;]. Any polynomial
ring is a unique factorization domain, and so is it’s localization at p, so the argument that Z is an
integrally closed domain holds pretty much verbatim for C[{z;/x;};:]p, hence P¢ is normal.

As a counter example take X = Spec C[t?, 3], and consider the maximal ideal m = <t2, t3>. Then the
stalk at m does not invert ¢? or ¢3, hence the same argument as in Fxample 3.3.1 demonstrates that X
is not a normal scheme.

We now wish to describe a process in which we take an integral scheme X and normalize it. We first
need the following definition:

Definition 3.3.3. Let f : X — Y be a morphism of schemes. Then f is dominant if f(X) is a dense
subset of Y.

We need the following lemma:

Lemma 3.3.1. Let f: X — Y be a morphism of integral schemes, then the following are equivalent:
a) f is dominant.
b) f takes the generic point of X to the generic point of Y.

¢) For every open affines U C X, V C Y, such that f(U) C V, the ring homomorphism Oy (V) —
Ox(U) is injective.
d) For all x € X the map of local rings (Oy) ¢(z) — (Ox ) is injective.
Proof. Let f: X — Y be dominant and by Lemma 3.2.3 let nx € X and ny € Y be the unique generic

points. It follows that since f is dominant that f(X) C Y is a dense subset. We first note that f(X)
is an irreducible subspace, as if Z1, Zs C f(X) are closed such that Z; U Zs = f(X), then we can write

49Recall that the localization map for an integral domain is injective, so A is indeed a subring.
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Zy =WinN f(X), and Z = Wa N f(X), hence f(X) = (W1 UW2) N f(X), but then f(X) C Wy UWay,
so Wy UWs = X as f(X) is dense. Since Y is irreducible we must have that W7 =Y or Wy =Y, either
way it follows that Z; = f(X) or Zo = f(X). It follows that f(X) must contain a unique generic point
point 7, and this point must also be a generic point for Y, so n = ny.

We now claim that f(nx) = ny. Note that for any subset U we have that f(U 7y C f(U). Indeed if f
is continuous, then f~1(f(U)) is closed, and since f(U) C f(U), we have that f=(f(U)) C (f(U)),

so U C fﬁl(f(U)) implying that U C f~'(f(U)), and finally that f(U) c f(U). It follows that
f(X) = f(nx) C f(nx) which must be equal to Y as f(X) is dense. It follows that f(nx) is dense, hence
f(nx) must be ny. We thus have that a = b. Clearly if f takes the generic point of X to the generic
point of Y then f(X) is dense in Y so b = a as well.

To see that b = ¢, let U C X, and V C Y be affine opens such that f(U) C V. Then we have an
induced morphism of affine schemes f|y : U — V. Since Ox(U) and Oy (V) are integral domains, and
nx € U and 7y € V both correspond to the zero ideal, we have that by b), f|y must come from a ring
homomorphism ¢ satisfying ¢=1({0)) = (0), hence Oy (V) — Ox (U) is injective. If this holds for all such
open affine, then f must take the generic point to the generic point so ¢ = b as well.

For ¢ = d, let x € U and f(z) € V. Then writing U = Spec A, and V = Spec B, we let z = p,
and f(z) = ¢~ (p), where ¢ : B — A is the ring homomorphism inducing f|y;. The map (OY) @) —
(f«Ox)f(x) is clearly injective, so it suffices to check that (f.Ox)s) — (Ox). is injective. Let U, C
Spec B, and take [Uy, s]g-1(p) € (f+Ox)f@) = ((flU)«Ospec A)p-1(p), then we have that this maps to
(£l (Ug), sl = [Us(g): Slp» where ¢(g) # 0. If this is zero, then there exists some distinguished open
Un C Ug(g) such that sy, =0, but the restriction maps on an integral affine scheme are injective, so this
implies s = 0, hence [Uy, s] = 0, hence ¢ = d as desired. To see that d = ¢, it suffices to reduce to the
case of affine schemes, let ¢ : B — A be the ring homomorphism inducing Spec A — Spec B. The stalk
map (Ospec B)¢—1(p) —+ (Ospec A)p is then the localization of the map B — A, at ¢~ 1(p), which exists as
#(¢~1(p)) C p. We have the following commutative diagram:

B—— A

Byap) ——— 4

Since A and B are integral domains the vertical arrows are injective, and by hypothesis the bottom arrow

is injective. It follows that if ¢(b) = 0, then ¢(b)/1 € Ay is zero, implying that b/1 € By-1(, is zero

hence b € B is zero. Therefore ¢ is injective as desired, so ¢ = d. O
We have the following definition:

Definition 3.3.4. Let X be an integral scheme, then the normalization of X is the scheme X, equipped
with a morphism N : X — X, such that for every normal integral scheme Z, and every dominant
f:Z — X the following diagram commutes:

Z —f—— X

A

af N

L7

where

As with every object defined this way we must show that such an object exists and is unique up to
unique isomorphism. We do so now:

Theorem 3.3.1. Let X be an integral scheme, then it’s normalization, X exists, and is unique up to
unique isomorphism.

Proof. If such an object exists it is obviously unique to up to unique isomorphism, as the morphism N
we construct will be dominant so we need only check the universal property.

First consider the case where X = Spec A is affine, then we take X = Spec /:1, where A is the integral
closure of A in Frac(A4). This comes with a canonical injection map A — A, so we get a dominant
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morphism N : Spec A — Spec A. Now let Z be a normal integral scheme, and f : Z — Spec A be a
dominant morphism, then for every affine open U C Z, we have that f|y : U — Spec 4, is induced by
an injective ring map. The homomorphism A — &z (U) is given by the ring homomorphism A — 0z (Z)
composed with restriction to €z(U). This second map is injective, and since the composition is injective,
we must have that A — 0z(Z) is injective as well.

We want to show that the ring homomorphism A — &7(Z) factors through the inclusion A — A.
We first show that €z(Z) is integrally closed. Let a € Frac(€0z(Z)) be integral over 0z (Z), and let
Spec B C Z be an affine open. Then since Z is integral, we have that 0z(Z) C B"", so Frac(0z(Z)) C
Frac(B). It follows that a € Frac(B), and that a is integral over B. Let I ={b € B :ab € B}, if I = B,
then a € B so we are done. If I # B, then I C p for some prime ideal p C B. We see that a is integral
over By, and thus a € By as Z is normal. However, there then exists an s € B \ p such that s-a € B,
implying that s € I, contradicting the fact that s € B\ p, so I = B. It follows that a € B = 0z(V).
Cover Z with affine opens V;, and the same argument shows that b € 0z(V;) for all i. For all affine opens
Vijik C ViN'Vj, we have that we can identify 0z(V;) and 0z(V;) as subrings of 07(Vijx), so b € Oz(V;)
and b € 07(V;) both map to the same element in &7 (V;;)"'. Since the affine opens form a basis for
the topology on Z, and thus determine a sheaf on a base, it follows that b € 0z(Z) so 0z(Z) is indeed
integrally closed.

It follows that since A injects into &z(Z), and 0z(Z) is integrally closed, that A injects into 04 (Z) as
well, thus we have a morphism A — Z. Since A injects into A we clearly have the following commutative
diagram in the category of rings:

ﬁz(Z) — A

which yields the following commutative diagram in the category of schemes:

Z ——— Spec A

Spec A

implying the result for affine integral schemes.

Now let X be an integral scheme, and {U; = Spec A;} be an open affine cover for X. Then we have
isomorphisms f;; : U;; C Spec A; — SpecA which agree on triple overlaps. For each 4, set U; = Spec A;,
and let NV; : SpecA — Spec A; be the normalization map. Finally set U;; C Spec 4; to be N; *(U;;). We
claim that UU satisfies the universal property of the normalization of U;;. Indeed, we have a morphism
Ni|Uij : Uij — U;; which must be dominant as it sends the unique generic point of Uij to Ujj. Now
let f:Z — U;; be any dominant morphism from an integrally closed scheme Z, then the composition
tof:Z — Spec A; is dominant, and there is a unique morphism g : Z7 — SpecA such that Nog =0 f.
But this implies that g(Z) C UU7 so g factors through the inclusion mapUm — Spec A; implying that U”
is indeed the normalization of U;.

We want to show that there exist scheme isomorphisms ¢;; : Uij —U i which agree on triple overlaps.
Fix the notation Ni|Ui = N;;, and note that we have a dominant morphism 3;; o Ny; : Uy; — Uy, It
follows that there is a unique morphism ¢;; such that the following diagram commutes:

Uij —BijoNi; — Uy;

e

bij

l/

Ui

50Via the inclusion map.
511f one is unconvinced, then they can write out the restriction maps themselves, and find that this must be true by
examining the induced injective maps Frac(0z(Z)) — Frac(0z(V;)).
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Similarly, we have a morphism ¢;; : ﬁji — Ujl- such that a similar diagram commutes. We thus claim
that the following diagram commutes:

UZJ Nij —> U”
| e
Djiodij Nij
L7
Uij

Indeed, note that N;; o ¢j; = Bj; o Ny, so:

Nij o ¢ji o ¢ij =Pji o Nj; o dij
=PBji o Bij o Nij
=N,
so the diagram commutes. But the identity map also makes this diagram commutes so ¢;; o ¢;; = Id,
and similarly ¢;; o ¢;; is the identity, implying that they are isomorphisms. It is easily seen by a similar
argument that these morphisms agree on triple overlaps, as the j;; agree on triple overlaps so the U; glue
together to form an integral normal scheme X.

It follows that the N; then also glue together to form a dominant morphism N : X — X, such that
Nz g, = Ni. Given f: Z — X with f dominant and Z integral normal, we obtain an open cover of Z by
Vi = f~Y(U;). Each of these schemes is normal integral, and the restriction is clearly dominant, so we
obtain gives unique morphisms V; — U; which which clearly agree on V; N Vj. These maps then glue to
yield a unique dominant morphism Z — X such that the relevant diagram commutes, so X is indeed the
normalization of X. O

3.4 Noetherian Schemes

We now turn to defining another important class of schemes, called Noetherian schemes, which again
have an interesting interplay between the algebraic properties of their structure sheaf, and the topological
properties of the total space. To begin, we review some commutative algebra:

Definition 3.4.1. Let A be a commutative ring, then A is Noetherian if every strictly increasing chain
of ideals:

Lchclz3C---

terminates. In other words, there exists some m such that I,,, = I,,4 for all £ > 0.

Example 3.4.1. Any field is obviously Noetherian, any finite ring is also obviously Noetherian. Mildly
more interestingly, Z is Noetherian. Indeed, every ideal of Z is of the form nZ for some n € Z, so suppose
we have the following infinite chain of ideals:

(n1) C (ng) C ---

We see that if (n;) C (ns), then ny € (ng), hence ny = a - ny for some a € Z. It follows that ng divides
ny. If this is chain is infinite, then n; has infinitely many divisors, which is absurd implying the claim.

We have the following useful lemma which makes the example above a bit more immediate:

Lemma 3.4.1. Let A be a ring, then A is Noetherian if and only if every ideal of A is finitely generated.
Proof. Suppose that every ideal of A is finitely generated, and that:
L cl,C---

is a strictly increasing chain of ideals, and let:

1=

i



3.4. NOETHERIAN SCHEMES 169

We claim that I is an ideal (no generating set needed!). Indeed, we see that if 0 € I, and that if a,b € I
then a € I; and b € I; for some ¢ and j. Without loss of generality suppose that ¢ < j, then a; € I; so
a+0b € I; hence a + b € I. We see that I clearly contains all of it’s inverses so I is a subgroup. Now let
a€l,and b € A, then a € I; for some i, and a-b € I; so a-b € I as well implying that I is an ideal.

Since I is finitely generated, let I = {aq,...,a,) for some n € Z. We have that each a; lies in some
I;, for some j;, so let ji = max(ji,--- jn), then since I;, C I;, for all i € {1,...,n} we must have that
I;, contains each a;. Let j, = m, then it follows that I C I,,,, so I = I, as I,,, C I by definition. For
any [ > m, we have that I,,, = I C I; so the chain clearly terminates, and A is Noetherian.

Conversely, let I C A be any ideal with minimal generating set {a;};c; where J is a totally ordered
set that is not finite. For any j € J we set I; = {a;}i<;, and note that for any j < k, we have that
I; C Ij, and that this inclusion is strict. Indeed, if I; = Ij; then for all j <1 < k, we have that a; € I,
implying that a; = Zig j bja; hence a; is not a generating element of I, a contradiction, so I; C I,. We
can label the initial segment of J with natural numbers regardless of it’s cardinality, hence:

LchhcC---

is an infinite strictly increasing chain of ideals, so A is not Noetherian. The claim then follows by the
contrapositive. O

We also have the following collection results:

Lemma 3.4.2. Let A be a Noetherian ring then:
a) If S is any multiplicatively closed subset then S~ A is Noetherian.
b) If I C A is an ideal then A/I is Noetherian.

Proof. Let Is C S™'A be an ideal, then we first claim that

Ig =871 := {%ZGEI,SES}
for some I C A. In particular, let I = 7~1(Ig) where 7 : A — S™1A is the localization map. Indeed, we
have that:

Slr=(Ig) = {% ca€n(Ig),s € S}

Suppose that a/s € I, then we have that a/1 € Ig, so a € 7~ 1(Is). It follows that a/s € S~1r~! giving
us one inclusion. Now suppose that a/s € S~!771, then a € 77!, so a/1 € Is by definition. It follows
that a/s € I, by a/1-1/s =a/s, hence I = S~1n~!(Ig) implying the claim.

Since A is Noetherian, it follows that 7=1(Ig) is finitely generated. In particular, since any of ideal
of S71A is generated by elements of the form a/1 as 1/s is invertible, we clearly see that S~1I is finitely
generated as well. By the above paragraph, it follows that Ig is finitely generated, hence S~'A is
Noetherian by Lemma 3.4.1 implying b).

Now let I C A be an ideal. We see that if J is an ideal of A/I, then J is of the form 7(7~1(J)) as
the quotient map 7 : A — A/J is surjective. We see that 7=1(.J) is finitely generated as A is Noetherian,
so J itself must be finitely generated as well. Indeed suppose that {ai,...,a,} are generating elements
of #71(J), and let [j] € J. We see that j € m~!(J) can be written as _, b;a;, hence [j] = >,[bi][ai],
so {[a1],...,[an]} generates J. It follows that every ideal of A/I is finitely generated, hence A/I is
Noetherian by Lemma 3.4.1 implying b). O

The following results are some of the most famous results in commutative algebra, the first of which
is known as the Hilbert Basis theorem.

Theorem 3.4.1. Let A be a ring, then A[xy,...,x,] is Noetherian if and only if A is Noetherian.

Proof. We see that if A[zq,...,z,] is Noetherian, then Alzy,...,xz,]/ (z1,...,2,) = A must be Noethe-
rian by Lemma 3.4.3.

Now suppose that A is Noetherian, since we trivially have that Afz,y] = (A[z])[y], it suffices by an
induction argument to show that A[z] is Noetherian. Let I C Alx] be an ideal, we will show that I is
finitely generated. We have a partial order on I, by writing:

f=anz" +---+az' +ap g =brz® + -+ brat + by
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and saying that f < g if and only if n < k, we call n and k the degree of f and g respectively, and write
it as deg f. Choose an element of least degree fy € I, i.e. an element f; such that there is no g in I
satisfying deg g < deg f. If (fy) = I we are done, if not, then we choose an element f5 in I ~\ (fy) of least
degree. We perform this recursively obtaining a sequence’” (fo, f1,...) C I. For each fi, let aqeg s, be
the leading coefficient of f;, and consider the ideal J = (aqeg fy,-..) C A. Then, since A is Noetherian,
we know that the sequence:

(Qdeg fo) C (Qdeg fos Qdeg f) C * -

terminates, so for some m > 0, we have that this chain must terminate with (adeg f,, - - - , @deg f,, ) iIMplying
that J = (adeg fos - - - » Gdeg f,,)- We claim that I = (fo, ..., fm). Suppose otherwise, then by construction
Jms1 & (fo,-- -, fm), but Gqeg f,.,, € J, S0 we can write:

m
Adeg frmi1 = E :adeg £:bi
i=0

for some b; € A. Define g by:

g= Z bifideg fmi1—deg fi
[

Note that this clearly lies in (fo, ..., fm), but this element as the same degree as fi,+1 With agegy =
Qdeg i, - We thus see that f,,1 — g has degree strictly less than fy,11, and that fr, 1 —9 ¢ (fo,.. ., fm)s
SO fm+1 — ¢ is the minimal element of I \ (fo,..., fm), a contradiction. It follows that I = (fo,..., fim),

)

so every ideal of A[z] is finitely generated and thus by Lemma 3.4.1 we have that A[z] is Noetherian. [

We now have the following obvious corollary:
Corollary 3.4.1. Let A be a Noetherian and B be any finitely generated A algebra, then B is Noetherian.
To prove our second famous result, we need to extend the idea of a Noetherian ring to modules.

Definition 3.4.2. Let M be an A module, then M is Noetherian if for every strictly increasing chain of
submodules:

Ny CNyC---

terminates.
We prove the following analogue Lemma 3.4.1
Lemma 3.4.3. Let M be an A module, then the following hold:
a) M is Noetherian if and only if every submodule is finitely generated.

b) If 0 - My — My — M3 — 0 is an exzact sequence, then My is Noetherian if and only if My and
M3 are.

c) If A is Noetherian, and M is finitely generated then M is Noetherian.

Proof. We begin with a). Suppose that every submodule of M finitely generated, and consider the
following sequence of submodules:

Ny C Ny C---
Let:
N =N
i
Then this has finitely many generators (mg, ..., m,) for some n, and each must lie in N; for some 4, so
choose the largest such i, and call it k. We have that (mq,...,m,) C N essentially by construction,

N’ = Nj. It follows that for any [ > k, we have that N; C N’ = Ny, so for all | > k we have that
N; = Ng, so M is Noetherian.

52This is equivalent to using the axiom of dependent choice.
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Now suppose that M is Noetherian, and let N be a submodule which is not finitely generated. Let
{m;}ier be the minimal generating set of N where I is a totally ordered set of any cardinality. For any
J € I let N; be the submodule generated by the elements {m;};<;, then for any k < j, we have that
Ni € N;. If N, = Nj then for each £ < < j, we have that m; can be written as a linear combination of
{m;}i<k, hence m; is not a generating element. It follows that Ny is a strict subset of N; for each k < j.
Since we can write the initial segment of any totally ordered set as the natural numbers, we have that:

Ni CNy CN3C---

is a strictly increasing chain of ideals which does not terminate, hence M is not Noetherian, a contradic-
tion. It follows that every submodule of M (including M itself) must be finitely generated, thus we have

a).

Now suppose that we have an exact sequence:
04>M1 *f%MQ*!]%Mg,;)O

is an exact sequence of A modules. If M, is Noetherian, then we have that M35 = Ms/kerg so Ms is
Noetherian, as every submodule of M3 must be finitely generated. Moreover, every submodule of M,
is a submodule of M,, so we have that every submodule of M; is finitely generated hence M is also
Noetherian.

Let M7 and M3 be Noetherian modules, and consider the following chain of strictly increasing sub-
modules of Ms:

Ni CNyC---
Then we have that:
fﬁl(Nl) C fl(NQ) cee and g(Nl) C QQ(NQ) (@R

are are strictly increasing chains of ideals in M; and M3 respectively. Since M; and M3 it follows that
there exist n; and ng such that f~(N,,) and g(N,,) make the above chains terminate. Without loss of
generality let n3 > ns, and denote ng by n. Then we claim that for all £ > n, Ny = N,,. Indeed consider
the following diagram:

0 —— YV, f N, g g(N,) —— 0

0 —— f~H(Ve) f Ni 9 g(Nk) —— 0

The vertical arrows are inclusion maps, so the leftmost and rightmost arrows are the identities. We want
to show that the middle arrow is the identity as well, and it suffices to show that Ny C N,,. Let m € Ny,
and consider g(m) € g(Ng). Since the right most arrow is the identity, we have that g(m) € g(IV,,), since
g is surjective there exists an element [ € N,, which maps to g(m). Let ¢ : N,, = Ny denote the inclusion
map, then since:

g9(e(1)) = g(m)

It follows that ¢(l) — m € kerg, but the kernel of g is the image of f, so we have that there exists
an n € f~1(Ng) such that f(n) = ¢(I) — m. Since the left most arrow is the identity, we have that
n € f~Y(Ny), so f(n) € N,. It follows that ¢(I) —m € N,, C N; hence m € N,, as well so N, = N,,, and
the middle arrow is the identity. We thus have that V,, makes the chain terminate implying b).

To prove ¢), let A be a Noetherian ring, and suppose that M is finitely generated. Then M is a quotient
of the free module A™ for some n, and so it suffices to check that A™ is a Noetherian A-module. Note
that every submodule of A is by definition of an ideal, as it is a subgroup and swallows multiplication, so
A is Noetherian as a module over itself as well. We proceed by induction, suppose that A™ is Noetherian,
then we have the following short exact sequence:

00— A—fo> ATl —g5 A" — 0

Since A™ is Noetherian and A are Noetherian, it follows by b) that A"*! is Noetherian implying c) as
desired.

O
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We are now in position to prove the following result, known as the Artin-Tate lemma:

Theorem 3.4.2. Let A C B C C be rings where A is Noetherian, C is finitely generated over A, and C
is a finite B module. Then B is finitely generated as an A algebra.

Proof. Let {x1,...,2,} be the generators of C' as an A algebra, and let {y1,...,ym} be the generators
of C' as a B module. Then we have that for some b;5, b;;, € B that:

Tp = Z bi;y; and Yy = Zbijkyk (3.4.1)
J k

Let By be the A algebra generated by {b;;, b;jx}. By Corollary 3.4.1, we have that By is Noetherian, and
we have that A C By C B.

It is clear that C' is a By-algebra, so we claim that C is finite over By, i.e. is a finitely generated By
module. Every element ¢ € C' can be written as:

c= Y G,y ey
SRRy

By making repeated use of the equations in (2.4.1) we can rewrite this in terms of a linear combination

of y; and elements of By, hence C is a finitely generated By module. It follows from Lemma 3.4.2 part
¢) that C is a Noetherian By module, so every submodule of C' is finitely generated. We thus have that
B is a finitely generated By module, and thus a finitely generated A algebra as desired. O

After our brief detour into commutative algebra, we are now ready to dive back into scheme theory. It
should be no surprise that the class of schemes we are about to study are intimately related to Noetherian
rings. We begin with the following definition:

Definition 3.4.3. Let X be a topological space, then X is Noetherian if every decreasing sequence of
closed subsets:

YIDY'QD...

terminates. In other words there exits an integer m such that for all kK > m we have Y,, = Y}.

Example 3.4.2. Let A be a Noetherian ring, then Spec A is a Noetherian topological space. Indeed,
any descending sequence of closed subsets can be written uniquely as a sequence of the vanishing locus
of radical ideals Iy:

V(Il) D) V(Ig) DI
This then corresponds to an increasing sequence of ideals:
LclycC---

which must terminate as A is Noetherian. It follows that the chain V(I;) D V(I3) D --- must terminate
as well.

Note that not every affine scheme which is a Noetherian topological space comes from a Noetherian
ring. Indeed consider the infinite polynomial ring A = k[z1,x9,...]/ <x%,x§, .. > over a field k. Every
prime ideal must contain the nilpotents [z;] for all i, so the only prime is given by p = {([x1], [22],...)
implying that Spec A is a single point and thus Noetherian. It clear that A is not Noetherian as p is not
finitely generated.

Lemma 3.4.4. Let X be a Noetherian topological space, then every non empty closed subset Z C X can
be expressed uniquely as Z = Z1 U ---U Z,, where each Z, is an irreducible closed subspace, and for all
i, we have that Z; ¢ Z;.

Proof. Suppose there exists a closed subset Y7 that cannot be expressed as a finite union of irreducible
closed subspaces. If Y] contains another such closed subset Y5, then we have that Y7 D Y5. We can
repeat this process ad infinitum, but since X is Noetherian, we must have that this chain eventually
terminates for some Y,.. Now since this chain terminates, it follows that every proper closed subset of Y,
can be written as the finite union of irreducible closed subspaces. We see that Y, is not irreducible as
other wise it is trivially a finite of union of irreducible closed subspaces, hence Y, = W7 U Wy for proper
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closed subsets of Y,.. However, W7 and W5 can be written as a finite union of irreducible closed subsets, a
contradiction. It follows that every closed subset of X can thus be written as a finite union of irreducible
closed subsets, and by discarding those that satisfy W; C W}, we have that every closed subset of X can
be written as a finite union of irreducible closed subspaces none of which fully contain each other.

To show uniqueness, suppose that:
Z=7Z1U---UZ,=Y1U---UY,

where Z; and Y; are irreducible closed subspaces none of which contain the other. It follows that for any
Z1CY1U---UYp, 80 Zy = (YiNZy)U---U (YN Zy), but then for some ¢ we have that Z; = Y; N Z; as
Zy is irreducible. It follows that Z; C Y;, and similarly for some j we have that ¥; C Z;, but then j =1
as we have that Z; C Y; C Z; and Z; is only contained in Z;. It follows that Y; = Z;, so repeating this
process for all 1 < i < n we have that the lists are the same, implying the claim. O

Definition 3.4.4. Let X be a scheme, then X is locally Noetherian if there exists a cover {U;} of X
by affine schemes such that each U; is the spectrum of a Noetherian ring. Moreover, X is Noetherian
if it can be covered by finitely many such affine schemes.

Example 3.4.3. Lemma 3.4.3 demonstrates that every affine scheme Spec A where A is Noetherian is
Noetherian.

Lemma 3.4.5. A topological space X is Noetherian if and only if every subspace of X is quasi-compact.
In particular, X is quasi-compact, and every subspace of X is Noetherian.

Proof. Let Y C X be a subset equipped with subspace topology, and {U; NY };c; be an open cover of Y.
Consider the set:

% = {finite unions of elements in {U;}}

and equip this set with the partial order given by V' < W if and only if V' C W. Consider an ascending
chain of elements in % :

Vl C V2 C -
then we obtain the descending chain of closed subsets of X:
VEo Ve D -

which must terminate for some m as X is Noetherian. By Zorn’s lemma, there must then be a maximal
element of %, call it W. Then we have that for some {i1,...,%,}

W=0U;,UJ---uu;,
and moreover that:

WNY =(U,NY)U---U(U;, NY)

Suppose that Y ¢ W, then there is a y € Y such that y ¢ W. However, {U;N};cr covers Y, so for some
k € I, we have that y € Uy. It follows that W C W UUy, contradicting the fact that W is maximal, hence
Y C W. Therefore, Y = WNY, and the set {Ui]. N Y}?=1 is a finite subcover, so Y is quasi-compact. In
particular, we have that X is quasi-compact.

Now suppose that every subspace of X is compact, and let:
VidoVeaD---
be a descending chain of closed subsets of X. Then we obtain an ascending chain of open sets:
UycUyC---

by letting U; = Vi°. Consider the open subspace:

U:Gm
i=1



3.4. NOETHERIAN SCHEMES 174

which has an open cover given by {U,}ien. Since U is quasi-compact, this subspace has an open cover
given U;, U --- U, for some {i1,---i,} C N. Via reordering we can assume that U;, C --- C U, , so
U = U,;,. We claim that the ascending chain stabilize with U, . Indeed suppose that m > i,, then
Ui, C Uy, however, by construction, U,, € U, so U,, = U;,. By taking compliments again we obtain

that the descending chain of closed subsets:
‘/1 D) ‘/'2 Do

stabilizes so X is Noetherian.

Now finally let Y be a subspace of a Noetherian topological space X. Let W C Y, then the subspace
topology on W induced from Y is the same as the one induced from X. That is, U C W is open
in the subspace topology if and only U = Y NV for some open set V' C Y. However, V is open in
Y if and only if V = X N Z for some Z open in X. It follows that U is open in W if and only if
U=YNV=XnNnYNZ=XnNLJZ, hence the topologies are equivalent. Since W is quasi-compact as
a subspace of X, it follows that W is quasi-compact as subspace Y, hence Y must be Noetherian by
argument above. O

Proposition 3.4.1. Let X be a Noetherian scheme, then X is a Noetherian topological space

Proof. By Example 3.4.2 we have that X is the union of finitely many Noetherian topological spaces, so
it suffices to prove that any such topological space is Noetherian. Let {U;};cr be the finite cover of X by
Noetherian affine schemes, and suppose that:

YiODY;D---

is a descending chain of closed subsets. Then for each ¢ we have that there exists an m; such that the
following chain terminates at m;:

YlﬂUiDYQQUij"'DYmiﬂUi

Take max{m;};c; which exists as I is a finite set, and let m be the maximum number. Then we claim
that for any k£ > m we have Y,,, = Y. Indeed, we can write:

Yoo =Y U = Vi N U =14 (3.4.2)

i i
as the {U;} cover X, implying the claim. O
As Example 3.4.2 shows, the converse does not hold. We continue to prove topological properties of

Noetherian schemes:

Lemma 3.4.6. Let X be a Noetherian scheme, then X has finitely many irreducible components. In
particular, X a finite number of connected components, each of which is the finite union of irreducible
components.

Proof. Note that any irreducible component is closed. Indeed, Z C X is irreducible then clearly so is Z,
so it follows that Z is maximal that Z = Z as Z is by definition a subset of Z. Since X is a Noetherian
topological space by Proposition 3.4.1, and by Lemma 3.4.4 we have that every closed subset of X can
be written as the finite union of irreducible closed subsets it follows that:

X=Z1U---UZ,

where each Z; irreducible. Let {Y;} be the set of irreducible components, then since each Z; must be
contained in one of these irreducible components, it follows that:

x=Jv

However, this is a decomposition of X into irreducible closed subspaces, each of which is not contained
in the other as they are all maximal. It follows that each Y; must be equal to some Z; for some 7 and j
by the uniqueness part of Lemma 3.4.4, hence there can only be finitely many irreducible components.
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Let { X;} be the set of connected components, then since each X is closed we have that by Lemma 3.4.4:
X,L-:ZLiU...UZni
for irreducible closed subsets of X;. It follows that:

x={Jz,v--uvz,

which must be a finite union as X is Noetherian, implying there are only finitely many X;. It follows that
each X; must be a finite union of irreducible components Y; of X by uniqueness of the decomposition of
X into irreducible components, again by Lemma 3.4.4, implying the claim. O

It turns out we can check the locally Noetherian condition affine locally (hence the name):

Proposition 3.4.2. Let X be a scheme, then X is locally Noetherian if and only if every open affine is
Noetherian.

Proof. If every open affine is Noetherian, then clearly X is locally Noetherian.

Suppose that {U; = Spec A;} is an affine open cover of X with A; Noetherian for all ¢, and V =
Spec B C X be any open affine. Then we obtain an open cover of V by {V N U}, and for each of
these there is an open cover by distinguished opens Uy C Spec B and U, C Spec A4;. Since the schemes
U;NV C Spec A; and U; NV C Spec B are clearly isomorphic (just take the identity), it follows that V'
admits a cover of distinguished opens all of which are Noetherian schemes. In particular, we have that
there exists a finite set of elements {f;} of B which generate the unit ideal (1) such that for all i By, is
a Noetherian ring.

Now let I C B be an ideal, and let m; : A — Ay, be the localization map. If Iy, is the localized ideal
in By, then we claim that:

1=\ 'y)
For each i we have that I C ;' (m;(I)) so it follows that I (), m; *(I1,). Now let b € (), m; *(Iy,), then

for each ¢ we have that m;(b) € Iy,, so we have that for some a; € I, and some integer m;:

b a;
1

It follows that there exists an M; such that fZM ‘b€ I. Let M be the maximum of all such M, then since
({fi}) = (1), we have that ({fM}) = (1) so we there exist ¢; in B such that:

=Y e
hence:

b=> cifMbel

K3
Now suppose that:
LclycC---
is an increasing chain of ideals, then for each ¢ we have that:

L, Ch, C--

!

terminates for some my,. Let m be the maximum of all such my,, then for all £ > m and all 7, we have
that kai = Imfi. It follows that for all £k > m we have that:

I = mﬂfl(]kf'i) = ﬂﬂ—iil(‘[mkfi) =1In

so the chain in B terminates with I,,, implying that B is Noetherian, and that V is Noetherian. O
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We have the following corollary:

Corollary 3.4.2. Let X be a scheme, then X is Noetherian if and only if it is quasi-compact, and for
every affine open Ox (U) is a Noetherian ring.

The condition that X is Noetherian is in a sense a finiteness condition that allows us to prove some
striking results. Often times we will restrict to the case where we deal with Noetherian or locally
Noetherian schemes, as they are easier to work with, and the condition is actually quite a reasonable
one. As an example, note that we showed that X is a reduced scheme if and only if all of it’s stalks
have no nontrivial nilpotents. The astute reader will recognize that we did not have a similar equivalent
condition for a scheme to be integral. As the following theorem shows, we can deduce such a result if we
work with sufficiently nice schemes:

Theorem 3.4.3. Let X be a connected and Noetherian scheme, then X is integral if and only if the stalk
(Ox)y is an integral domain.

Proof. Note that if X is integral then stalks are integral domains.

Conversely, suppose that X is a connected Noetherian scheme, such that all the stalks are integral
domains. Then all the stalks also contain no nontrivial nilpotents hence X is reduced by Lemma 3.2.1.

By Theorem 3.2.1 need only show that X is irreducible. As X is connected we have only one connected
component, and by Lemma 3.4.6 we have that X has finitely many irreducible components. Let X have
a decomposition into:

ZHJU---uUZ,

where each Z; is an irreducible component. We see that if Z; N Z; = ) for all j then Z; is open as its
compliment is the finite union of closed subset. Since Z; is irreducible and thus connected, it follows that
either n = 1 and Z; = X so we are done, or that Z; and Z, U --- U Z,, are disjoint open sets that cover
X so X is disconnected. It follows that if n # 1, every irreducible component of X must intersect with
at least one other irreducible component.

Suppose that n # 1, then there exist irreducible components Z and Y such that ZNY # 0. Let
x € ZNY and let U = Spec A be a affine open containing x. Note that if for all z € ZNY and all
U = Spec A we have that Z N Spec A = Y N Spec A, we can conclude that Y = Z, so without loss of
generality assume that ZNSpec A # Y NSpec A. By Lemma 3.2.2, we have that ZNSpec A and Y NSpec A
are irreducible closed subsets of Spec A. We claim that they are irreducible components, indeed, suppose
that there was an irreducible closed subset S C Spec A such that Z N Spec A C S, then the closure of
S in X is an irreducible closed subset of X containing the closure of Z N Spec A, however this is equal
to Z = Z contradicting the fact that Z is irreducible. It follows that Z N Spec A and Y N Spec A are
irreducible components of Spec A.

Now let « correspond to the prime ideal p C A, ZNSpec A = V(I), and Y NSpec A = V(J) for radical
ideals T # J C A. We claim that I and J are minimal prime ideals over (0), in the sense that a) they
are prime ideals, and b) for every prime ideal we have that if ¢ C I then I = q. Let a,b € A such that
a-b € I, then we have that:

Uay NV(I) = (U NV(I)) N (UpyNV(T)) =0

Since V(I) is irreducible, it follows that either U, N'V(I) or U, N V(I) are empty, hence either a € I or
b e I sol and J are both prime. To see that they are minimal, suppose that there exists a prime ideal
q C I, then V(I) C V(q), but by reversing the argument above we have that V(q) is an irreducible closed
subset so it follows that V(I) = V(q) as V(I) is maximal. We thus have that I = VT = \/§ = q so I and
J are both minimal prime ideals over (0).

We see that A is not an integral domain. Indeed, if A were an integral domain, then (0) is the unique
minimal prime ideal over (0). In particular, there is a bijection between prime ideals which are contained
in p and prime ideals of A,, hence we must have that there I, and I; are minimal primes of A,. It follows
that A, = (Ox), is not an integral domain, a contradiction, hence we must have that n = 1, implying

that X is irreducible, so X is reduced and irreducible and thus by Theorem 3.2.1 an integral scheme as
desired. O
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3.5 Morphisms of Finite Type

Recall that in Definition 2.3.4 we defined what it meant for a k-scheme to be locally of finite type. We
now extend this definition to arbitrary schemes as follows:

Definition 3.5.1. Let f: X — Y be a morphism of schemes. Then f is locally of finite type if there
exists an affine open cover {V; = Spec B;} of Y, such that for each i, f~*(V;) can be covered by open
affine subsets U;; = Spec A;; where A;; is a finitely generated B; algebra. The morphism is of finite
type if the cover of f~1(V;) is finite.

We have the following obvious examples:
Example 3.5.1. Let A be a finitely generated B algebra, then Spec A — Spec B is obviously of finite
type. Let X be a k-scheme of locally finite type, and f : X — Spec k the morphism making X a k-scheme,

then f is also trivially locally of finite type. If we can take X to be Noetherian k-scheme of locally finite
type, then we also have that f is of finite type.

We now show that being locally of finite type is local on target:

Proposition 3.5.1. Let f : X — Y be a morphism of schemes, then f is locally of finite type if and only
if for every affine open V- C'Y we have that f|s—1(v) : =Y V) = V is of locally finite type.

Proof. Clearly we have that if for every affine open V' C Y the morphism f[;-1(y) : fYv) - Vis
locally of finite type then f is.

Now suppose that f : X — Y is a morphism of locally finite type. Let {V; = Spec B;} be an open
cover for Y, and for each i, let {U;; = Spec A;;} be an affine open cover for f~*(V;). Let V = Spec B be
any affine open, then we can write:

v=Jvinv

hence:

FHV) =Uf‘1(V;) nfFHv)

=Ju;n s v)
i

Now note that U;; N f~1(V) C U;; = Spec A;;, thus there exist elements f;;; € A;; such that:
Ui; N f_l(v) = U Ufijk
k

We note that Uy, = Spec(Ayj)y,,,, hence doing this for all 4 and j we have obtained an affine open
cover:
fﬁl(v) = U Ufijk = U SpeC(Aij)fijk
i,5,k i3,k

It thus suffices to show that if A is a finitely generated B algebra, then Ay is also a finitely generated B
algebra for all f € A. Let m : A — Ay be the localization map, and ¢ : B — A be the map making A
a finitely generated B algebra. The map 7 o ¢ which takes b — ¢(b)/1 is then the map making Ay a B
algebra. Let {a1,...,a,} be the generators of A as a B algebra, then any element a € A can be written
as:

a = Z (b(bhlk)alll af{l
11l
We claim that {a1/1,...,a,/1,1/f} is a generating set for Ay. Indeed, we see that any element in Ay,
can be written as a/f*, hence:

a/f* =(1/f*) - a/1 |
Z(l/fk) ) Zil""in ¢(bi1»--ik)azll e a/iln

implying the claim. O
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We also have that morphisms of locally finite type are stable under base change:

Proposition 3.5.2. Let f : X — Z be a morphism of locally finite type, and g : Y — Z be ay other
morphism. Then wy : X Xz Y =Y is a morphism of locally finite type.

Proof. Let {V; = Spec B;} be a cover of Z by affine opens, and {U;; = Spec A;;} a cover of X by affine
opens such that f(U;;) C Vi. Moreover, let {W;; = SpecC;;} be a cover of Y of affine opens such that
g(W;j) C Vi. Tt follows that w3 ' (Wi;) & X xv, Wi = f~1(V;) xv, Wy;. Now f~1(Vi) xy; Wi, admits an
open affine cover of the form U, xv, W;; = Spec(A;x ®p, C;j). We then need only show that A;x ®p, Ci;
is a finitely generated C;; algebra. However, this is then clear, as if {a1,...,a,} are the generators of
A, as a B, algebra, then {a1 ® 1,...,a, ® 1} are generators of A;;, ®p, C;; as C;; algebra. Indeed, we
can write any element w in A;; ® B;C;; as a sum of trivial tensors:

w:ZaiQ@ci ZZ(%‘@l)'(l@Ci)
i i
Each «; can be written as the finite sum:
JiJn
hence:
W=y (biji--jnal'-al ®1) - (1@c)
i jl"'jn

:Z Z (a1 ® 1)j1 e (an ® 1)j" (1 ®bijyjnCi)

i jl"'jn
By collecting terms, and relabeling we obtain that:
w= Y (@) (4 ®1)" - (1®ci.q,)
7;1"'in
implying that A;; ®p, Cs; is indeed a finitely generated C;; algebra. O

Proposition 3.5.3. Let f: X =Y and g: Y — Z be morphisms of (locally) finite type. Then go f is
(locally) of finite type.

Proof. Let {W; = Spec C;} be an open affine cover for Z. Since g is (locally) of finite type, there exists
an open affine cover g=*(W;), {Vi; = Spec B;; };, such that each B;; is a a finitely generated C; algebra.
By the same logic, there exists an affine open cover of each f~1(V;;), {Uijx = Spec A;jk }x, such that each
A;ji is a finitely generated B;; algebra. Now note that for each i:

o= (o)

=U i)

= UVij

=f"Hg™ (Wy))

hence for each 4, the {U; i}, form an affine open cover of (go f)~'(W;). It now suffices to show that each
A;ji is a finitely generated C; algebra. Each A;ji is a finitely generated B;; algebra, so let {a,...,a,}
generate A;;i as a B algebra. Moreover, we have that each B;; is a finitely generated C; algebra so let
{b1,...,bm} generate B;; as a C; algebra. We claim that {aq,...,a,,b1,...,by,}"" generates A;j as C;
algebra. Indeed, let a € A, then:

l ln
a= E bll"'lnall B 2%
ly---1

53Here it understood that by b; we mean the image of b; in A;jr under the homomorphism making A;;x a B;; algebra.
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We can write:

_ A1 Am
biy.t,, = E Clyly Ay A 01 by
A1 A

hence:

A Am 1 In
a= E Cll~~-ln>\1~~>\mb11 "'bm all Ty
11l A1 Am

implying the claim.

If g and f are of finite type, then every cover can be taken to be finite, hence {U;;x } i is a finite cover
of (go f)~1(W;), so go f is of finite type as well. O

Example 3.5.2. Let f: X — Y be a closed embedding, then f is of finite type. Indeed, for every affine
open U = Spec A C Y, we have that f~1(U) = Spec A/I, so admits a finite cover of affine opens of X.
It remains to show that A/I is a finitely generated A algebra, however this clear as any [a] € A can be
written as a - [1] = [a - 1] = [a], hence A/ is finitely generated over A by [1].

Let ¢ : U — X be an open embedding, then ¢ is locally of finite type. Indeed, let {V; = Spec B;} be
an affine open cover of X, then :=1(V;) = UNV; and t|ynv, : UNV; — V; is an open embedding into an
affine scheme. We can cover each U N'V; with Uy, C Spec B; for some f;; € B. It follows that {Uy, }; is
a cover for :=(V;), and that L\Ufij is the given by the localization map 7;; : B; — (B;)y,,;. Consider the
morphism:

¢ Bile] — (Bi);

Let b/ fl: € (Bi)y,,, then bx™ = b/ f[% so (B;)y,; is finitely generated by {1,1/fi;} as a B; algebra. If X
is Noetherian, then we can take ¢ to be of finite type.

3.6 Separated Z-Schemes

In the category of topological spaces, direct products exist, and a space is Hausdorff if and only if the
map A : X — X x X has closed image. In the category of schemes, the topological spaces we are dealing
with are almost never dealing with Hausdorff spaces and we do not have product. Indeed, consider the
affine plane Ag, then this space is modeled off of C", but is certainly not Hausdorff, as the unique generic
point is contained in every open set. Moreover, we have that Ag xc A" = A('C“rm, so fibre products mildly

behave like direct products, but Ag“" has many more points than the naive cartesian product”.

However, if we restrict ourself to the category of Z-schemes, then fibre product, X x Y, does satisfy
the universal property of the direct product. Indeed, this is true essentially by constriction, if fx : X — Z
and fy : Y — Z are Z-schemes, then their fibre product is a Z-scheme. If fg : Q — Z is a Z-scheme, and
px : Q@ — X and py : @ — Y are morphisms of Z-schemes, then we automatically have fx opx = Qx
and fy o py = Qy, so there exists a unique morphism @ — X Xz Y of Z-schemes which satisfies the
direct product diagram. With this in mind, we wish to develope an analogue to a scheme being Hausdorff,
which mimics the definition of Hausdorff in the category of topological spaces, leading us to the next
definition:

Definition 3.6.1. Let X be a Z-scheme, then X is separated over Z, or alternatively a separated Z-scheme,
if the diagonal map A : X — X Xz X has closed image. A morphism f : X — Z is separated if
A: X — X xz X is a closed embedding.

The notion of separatedness is our analogue of Hausdorff in the category of schemes, and we will
spend the next few pages discussing the implications of such a result.

Example 3.6.1. Let X = Af, then we claim that A7 is separated over C. Indeed, we have that
X x¢ X = SpecClzy,...,z,] ® Clxy,...,2,], and that the diagonal morphism is induced by the ring
homomorphism given on simple tensors by ¢ : f ® g — fg. This is a surjective ring homomorphism, so
if I = ker ¢, we have that A(X) =V(I) C X x¢ X. It follows that X is separated over C.

54Which is not even a scheme!
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We would actually like to show that the notion of being separated over a scheme Z is the same as the
morphism f : X — Z being a separated morphism. To do so we will need to show that the diagonal map
is a closed embedding if it has closed image®® We need the following definition:

)

Definition 3.6.2. A morphism f : X — Y is a locally closed immersion”® if f factors as a closed
embedding followed by an open embedding. In other words we have the following commutative diagram
for some open subset U C Y:

X f——Y

AN g e
NS
U
where g is a closed embedding, and ¢ is the inclusion.

We want to show every diagonal map is a locally closed immersion.

Lemma 3.6.1. Let f: X — Z be a morphism, then A : X — X Xz X is a locally closed immersion.

Proof. Let {V;} be an affine open cover for Z, and for each i let: {U;;} be an affine open cover for f=*(V;).
We have that {Uij XV, Uik}i,j’k is an open affine cover for X xz X, and claim that:

U= U Uij Xv; Uij
ij
contains the image of A. However, this clear because A|y,; has image in U;; xv; U;j;, so A has image in
U, and we have that A factors as:

X—U—XxzX

The second morphism is clearly an open embedding, so we need only show that the morphism with
restricted image, which we denote by g, is a closed embedding. This is also clear, as if U;; = Spec A,
and V; = Spec B, then g|y,; is induced by the ring homomorphism A;; ® g, A;; — A;; which is surjective,
and is thus a quotient map. By Corollary 3.1.2 we have that g is a closed embedding, implying the
claim. O

We now prove the following more general statement:

Proposition 3.6.1. Let f : X = Y be a locally closed embedding, then f is a closed embedding if and
only if f(X) has closed image in'Y.

Proof. Suppose that f is a closed embedding, then f trivially has closed image. Moreover, every closed
embedding is a locally closed immersion as Y is trivially an open subscheme of Y.

Now let f be a locally closed immersion, and factor as ¢ o g where g : X — U is a closed embedding,
and ¢ is the inclusion map into Y. Suppose f(X) has closed image in Y, then by Corollary 3.1.2 we need
to find an open cover of Y such that f restricts to a closed embedding. Note that:

Y =UU f(X)°

as f(X) C U. We have that f|;-1y: f7*(U) = X — U is a closed embedding as it is equal to g, and that
FHf(X)®) is the empty scheme (), so f|p is the empty map which is also trivially a closed embedding,
implying the claim. O

We now have the following corollary:

Corollary 3.6.1. Let f : X — Z be a morphism of schemes, then f is separated if and only if X is
separated over Z.

We now list some examples (and non-examples) of separated schemes and morphisms:

Example 3.6.2. Every morphism of affine schemes is separated. Indeed, let Spec A — Spec B be a
morphism of affine scheme, then Spec A x5 Spec A = Spec A ®p A, and the diagonal morphism is given
by a1 ® as — a1as which is surjective, so A is a closed embedding. In particular, Spec A is separated
over Spec B.

55The other direction is immediate.
561n the literature this is sometimes called a locally closed embedding, or simply an immersion.
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Example 3.6.3. We claim that P = Proj A[xo,...,x,] is separated over A. We construct the map
P — Spec A given on the open cover {U,, = Spec(A[zo, ..., Zn]s; )o} by the morphism of affine schemes
induced by the ring homomorphisms A < (A[xo, ..., %]z, )o- We have an open cover of P’} x 4 P by
{Usz; xa Uy, }i ;. Now note that AN U,, x4 Uy, ) is equal to the intersection:

Uz, NUs,; = (Spec(A[zo, - - -, Tnlz;)0)a; o, = SPeC A{ 2 /i bhsti, i/ 2]
We have that:

Uz, x4 Usz; = Spec A[{zr/ i bori, {Yn /Y brzs]

We have that A|Uz,iﬂUzj is induced by the ring homomorphism which makes the following diagram of
rings commute:

A zg/®itrzis wz‘/%]\\

\\

Al{zr/zi it {Yn/Yj i) Al{wk /2 } i)
T
\
A[{xk/xi}/ﬁﬁi] A

where 9 is the inclusion, ¢ is the morphism x/x; — zi/z; - x;/x; for j # i, and z;/x; — x;/x;. The
maps ¢; and ¢; take x/x; and i /x; to zi/2; and yg/y; respectively. It follows that Az )2) = a1 )25,
and that Af(y;/y;) = xi/x; so A? is indeed surjective. Therefore, on the open cover Uy, x U,; we have
that A‘Uw,iﬂij is a closed embedding, so A is a closed embedding thus P’} is separated over Spec A.
We have the following non example:

Example 3.6.4. Let Z be the scheme obtained by gluing X = SpecC|z] and Y = Spec C[y| along the
affine open U, and U, via the isomorphism induced by x — y. We claim that Z is not separated over
SpecC. If ¥ x and vy are the open embeddings X — Z and Y — Z respectively, we have that Z has an
open cover given by ¥x(X) and ¢y (Y). It follows that Z x¢ Z has an open cover given by:

{¥x(X) xe ¥x(X), Yy (V) xc ¥y (YV), vx(X) xc ¥y (Y), ¥y (Y) xc ¥x(X)}

Each of these is isomorphic to the affine plane A%, so we need to determine how these schemes glue
together. We label these schemes by X, X5, X3 and X4 in the order which they appear, and set:

X; = SpecClz;] x¢ Spec Cly;] = Spec Clz;, y;]

Then X; and X» are glued on U,, NUy, and U, NU,,, X; and X3 are glued along U,, and U,,, X; and
X, are glued along U,, and U, X> and X3 are glued along U, and U,, X2 and X4 are glued on Uy,
and Uy, and X3 and X4 are glued along U, NU,, and U, NU,,. All of these morphisms are induced by
the by isomorphism x;,y; — x5, ;.

It follows that Z x¢ Z is the affine plane with four origins, and doubled axis. The diagonal A(Z) is
equal to A(¢x (X))UA(1y (Y)), which via the above identification is contained in X;UX5"". In particular,
geometrically A(Z) N X; and A(Z) N X3 is the diagonal in A%, while A(Z) N X3 and A(Z) N X4 is the
diagonal of AZ minus the origin. Therefore, A(Z) N X; is not closed for all i, hence by definition of the
topology on Z X¢ Z, we have that Z is not separated.

Note that this also shows that Z is not an affine scheme by Example 3.6.2.

We now show that every open and closed embedding is also a separated morphism:

Proposition 3.6.2. Let f: X — Z be a closed or open embedding, then X is separated over Z.

57 Abuse of notation alert! Technically, each X; is a copy of A(QC which we glue together to get Z X¢ Z, so only their images
under the canonical open embeddings are contained in Z X¢ Z. We employ this abuse so as to not clutter the paige with
notation.
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Proof. First suppose that f : X — Z is a closed embedding, then there exist an open affine cover
{V; = Spec B;} of Z such that U; = f~1(V;) = Spec B;/I; for some ideal I. It follows that X xz X
admits an open affine cover of the form:

Since B;/I; ®p, B;/I; = B;/I; we have that U; xvy, U; 2 U, so X xz X = X and the diagonal map is just
the identity. In particular, one can also see this by noting the f(X)xz f(X) =2 f(X)Nf(X) = f(X) = X.

Now suppose that f: X — Z is an open embedding, then X = U for some open subscheme of Z. We
have that X xz X 2 U xz U 2 U xy U = U, so again the diagonal map is just the identity, implying
the claim. O

Recall that morphisms/topological properties of schemes are generally considered ‘nice’ if they are
either local on target or stable under base change. We want to see that separated morphisms fall into
this category as well:

Proposition 3.6.3. Let f: X — Z be a morphism of schemes, then the following hold:

a) f is separated if and only if there exists an affine open cover {V;} of Z such that flz-1(v,) is
separated.

b) If f is separated, and Y — Z is another morphism, then X Xz Y is separated over Y.

Proof. To show a), we first assume that f is separated. It follows that A : X — X xz X is a closed
embedding, so Alp-1(v;y @ f7H(Vi) — f7H(V5) xv, f7H(V;) is also a closed embedding. It follows that
gy f~YV;) = V; is a separated morphism as well.

Now suppose that we have affine open cover {V; = Spec B;} such that f|;-1(y;) : f71(v;) = Vi is
separated. This then implies that Alp-1(y,) : f7H(V;) = f71(V;) xv, f71(Vi) is a closed embedding.
Let {U;; = Spec A;;} be an affine open cover for f~!(V;), then we have that {U;; xv, U} is an affine
open cover for f=1(V;) xv, f~1(V;), and that A|;,11(Vi)(Uij xv, Ui) = U;; N Usg. Since this is a closed
embedding, we thus have that U,;; N Uj; is affine and of the form Spec A;; ®p, Aix/I for some ideal I.
Doing this for all 4, we obtain an open affine cover of X X z X such A restricts to a closed embedding on
A7 (U;j xv, Usy) so it follows that A itself is a closed embedding.

To show b), suppose that f: X — Z is separated, and let g : Y — Z be any morphism. We want to
show that X xz Y is separated over Y. We have that:

(X xzY)xy (X xzY) 2 (X xzY) xy (Y xz X)
(X xzY)xyY)xz X

(X xzY)xz X

2 (X xzX)xzY

The diagonal map A : X xz Y — (X XzY) Xy (X xzY) is then the map induced by Ax : X — X xz X
and the identity on Y, composed with the above chain of isomorphisms. In other words we have the
following diagram:

XxZY\\

™

(X XzX) Xzyiﬂ'y

Y

TXXzX l
! |
4

XXZX

Yy

Axormx

The claim then follows from Lemma 3.6.2 which we prove below. O

Lemma 3.6.2. Let f : X — Z, and g:Y — Z be Z-schemes. Suppose that f' : X' - X andg :Y' —Y
are closed embeddings, then the induced map f' X ¢’ : X' Xz Y' — X Xz Y is a closed embedding.
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Proof. Note that X’ X Y’ comes from the following Cartesian square:

X' xgY — 7y —3 Y’
|

”L’ gog’

| |

X’ fof —— Z

The map f’ x ¢’ is the then the unique map making the following diagram commute:

X' Xz Y’
\\g’owyl
f/Xg/
\
, XxzY —mv—3Y
flomx ‘ ‘
X g
| |
X f—— Z

Let {W; = SpecC;} be an open affine cover for Z, and {U;; = Spec A;;}, {Vir = Spec B;i} be an open
affine cover for X and Y such that U;; and V;; map into W;. It follows that {U;; xw, Vix} is an open
affine cover for X xz Y. By the commutativity of the diagram, and the universal property of the fibre
product, we have that (f' x ¢')~1(Us;; xw, Vig) is isomorphic to f'~1(Ui;) xw, ¢~ (Vix). Since f’ and ¢’
are closed embeddings, we have the following chain of isomorphisms for some ideals I and J:
flil(Uij) Xw, glil(Vik) =~ Spec Aij/I X, Spec Bik/J
=~ Spec AU/I ®c, sz/,]
= Spec(Ai; @ CiBi)/ (I ®@ Big, Aij @ J)

hence f’ x ¢’ is a closed embedding as desired. O

Note that there is an alternative proof of Proposition 3.6.3 part b) that relies entirely on abstract
nonsense. Indeed, set X’ = X xz Y, then we wish to show that A : X' — X’ xy X’ is a closed
embedding. Well, we have the following commutative diagram:

X' Xy X —7mxr— X' —mx— X
X! Ty f
X’ Ty Y g A
The left square, and the right square are Cartesian diagrams, so it follows by Lemma 2.3.4 that the outer

square is cartesian as well. We then have the following commutative diagram:

X' XyX/ — Axonxonys— X Xz X —ax— X
) ! .l
| l |
X’ X X f Z

We see that mxy o Ax omx omxs = wx oy, and that fowx = gomy, so the outer rectangle is Cartesian,
and the right rectangle is Cartesian. It follows again by Lemma 2.3.4 that the left rectangle is then
Cartesian as well. We thus finally have the following commutative diagram:

X —A— X' xy X —7mxr— X!

TX Axomxomys X

l l l

X —Ax— X xz X ax — X
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The right square is Cartesian by our previous argument, and the outer square is Cartesian as mx, o A =
Idx/, while Ty 0 Ax o Ty = 7y, so we obtain the diagram form X’ x x X = X’. It follows that the left
square is Cartesian, and that A is the base change of Ax. Since Ax is a closed embedding, and closed
embeddings are stable under base change we must have that A is a closed embedding as well, implying
the claim.

We now note that the two other classes of morphisms we have mentioned, those of finite type, and
closed embeddings, are both preserved under composition. Indeed, if f : X — Y and g : Y — Z are both
locally of finite type, then we have that an affine open cover {V; = Spec B;} of Z, g|s-1(v;) : g V) =V,
is locally of finite type. Moreover, we have that if U;; is open cover of Y such that g(U;;) C V;, then
1w, - F71(Uij) = Usj is locally of finite type. Each f~1(U;;) has a cover of affine opens W5, such
that f(Wijx) C Ui;. It follows that varying over j and k, we get that g(f(Wij;x)) C Vi, and that Wi
cover f~1(g71(V;)). It is then clear that with W;;, = Spec A;ji, A;jx is a finitely generated B; algebra
so g o f is locally of finite type.

If f and g are closed embeddings, then for every affine open V = Spec B, we have that g=1(V) =
Spec A/I. Since f is a closed embedding, we have that f~1(g=1(V)) = Spec(A/I)/J, so the composition
go f is also a closed embedding.

These facts are essentially obvious from our results characterizing closed embeddings, and morphisms
of locally finite type. We wish to show the same result holds for separated morphisms.

Proposition 3.6.4. Let f: X =Y and g:Y — Z be separated morphisms, then go f : X — Z is also
separated.

Proof. We write A : X — X xz X for the diagonal map we wish to prove is a closed embedding, and
Ax: X > X xy X, Ay :Y =Y xz Y for the diagonal maps we know to be closed embeddings. From
Theorem 2.3.1 we have the following Cartesian square:

Xxy X —yv— X xz X

ijrx Ixf
Y Ay — Y xzY

where 1 is the map coming from the following diagram”®:

XXyX
.
1!)\
Sy XXZX mx —5 X
‘n"x gof
l l
X gof Z

It follows that 1 is closed embedding as it is the base change of the closed embedding Ay. We claim
that A =1 o Ax. Indeed, A comes from the following diagram:

X \
\ Id x
A\
X xz X mx — X
Idx ‘ ‘
TX gof
l |
X gof Z

58 Abuse of notation alert! We are once again using the notation 7x to refer to multiple maps.
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Now mx oo Axy =mx o Ax = Idx, so 1 o Ax makes the above diagram commute. It follows that A is
the composition of a closed embeddings, and thus a closed embedding, hence g o f is separated. O

Note that the intersection of two affine opens need not be affine. Indeed, let X be the affine plane
over C with doubled origin, then their are two copies of A% contained in X, but their intersection is two
copies of the zero ideal (0) which is manifestly not affine, i.e. no ring has two copies of the zero ideal as
a prime spectrum. We now show that separated morphisms provide a solution to this problem:

Proposition 3.6.5. Let f: X — Z be a separated morphism, and let V = Spec B C Z be an open affine.
Then for every open affine U; = Spec A; C X which maps into V, we have that U;NU; is an open affine.

Proof. Let A: X — X xz X, and then note that A(f~1(V)) is contained in f=1(V) xy f~1(V). We see
that if U; and U; are as above, we have that AN U; xy U;) =U;NUj, but A is a closed embedding so
U; NU;j is of the form Spec(A4; ®p A;)/J hence U; N U; is indeed an open affine. O

We have the following obvious corollary:

Corollary 3.6.2. Let X be separated over an affine scheme Spec A. Then the intersection of every affine
open in X is an affine open.

Note that this text in algebraic geometry has never once mentioned the notion of a variety, largely
because the author was first introduced to algebraic geometry through the language of schemes. However,
we now have sufficient language to give the definition of a variety, which are often the most geometric
feeling schemes. We note that the definition of a variety varies wildly throughout the literature, and will
change in this text when we discuss Abelian varieties.

Definition 3.6.3. Let X be a scheme, then X is a variety over k if X is of finite type over a field k,
reduced, and separated over Spec k.

Note that every variety is immediately quasi-compact as it is the finite union of affine schemes. Each
of these affine schemes is Spec of a finitely generated k-algebra thus every variety is locally Noetherian.
In particular, by Corollary 3.4.2 every variety is Noetherian.

Example 3.6.5. The n-dimensional affine plane A, and projective space P{ are varieties. In general,
the closed points of ‘nice enough’ varieties over C, when equipped with the standard topology induced by
that on C™ have the structure of smooth manifolds. We will make this notion precise later in the text.

Example 3.6.6. Let X be a variety, then every closed subset of Z C X is a variety when equipped with
the induced reduced subscheme structure. Every reduced closed subscheme of X is isomorphic to such a
Z, so every reduced closed subscheme of X is a variety.

Let U an open subscheme of X, then U is a variety. Indeed, open embeddings are separated by
Proposition 3.6.2, and are locally of finite type by Example 3.5.2. Since X is Noetherian the open
embedding ¢ : U — X is of finite type, thus U. Finally U is reduced as being reduced is a local property.

Suppose that Y is a reduced locally closed subscheme of X, i.e. there exists a morphism ¢ : Y — X
such that ¢ is a locally closed immersion. Then ¢ factors as an open embedding in to a reduced closed
subscheme Z C X, followed by the closed embedding Z — X. It follows that Y is a variety as it is an
open subscheme of the variety Z.

We have the following result:

Theorem 3.6.1. Let X be a reduced projective k-scheme, then X is a variety. In particular, any closed
subset of P} equipped with the induced reduced subscheme structure is a variety.

Proof. By Theorem 3.1.1 a projective k scheme is closed subscheme of P} for some k, hence there exists
some closed embedding X < P}!. Since closed embeddings are separated by Proposition 3.6.2, and sepa-
rated morphisms are closed under composition by Proposition 3.6.4, we have that the natural morphism
X — P} — Speck making a X a k scheme is separated. Moreover, by Example 3.5.2, X — P} is
separated, so Proposition 3.5.3 implies that X is separated over k. Since X is assumed to be reduced,

we have that X naturally carries the structure of a scheme of variety over k.

Let X C P} be any closed subset, then equipped with the induced reduced subscheme structure, we
have that the above discussion applies to X as well, hence X is a variety. O

With Theorem 3.6.1, and Example 3.6.6 in mind we employ the following definitions:
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Definition 3.6.4. A scheme X is a projective variety if it is a reduced closed subscheme of P} for
some n. In particular, every projective variety is isomorphic to a closed subset of P} equipped with
the induced reduced subscheme structure. A scheme X is a quasi-projective variety if it is an open
subscheme of P} for some n.

We note that A} is a quasi-projective variety, and that every reduced closed subscheme of A™ is
quasi-projective variety. Moreover, every projective variety is quasi-projective, as they Z — Z — X is a
locally closed immersion. We therefore end this discussion, by remarking that most varieties one comes
across in nature are quasi-projective, and the construction of a variety that is not quasi-projective was a
research area of great interest until Nagata provided such an example in 1950’s.

3.7 Proper Z-Schemes

A compact topological space X is generally one where every open cover has a finite subcover. Throughout
this text, we have called this property quasi-compactness, largely because this definition is not restrictive
enough. Indeed, the analogue of the complex vector space C" in algebraic geometry is A¢. Under the
usual definition of compactness, Ag is compact as every affine scheme is quasi-compact, but C" is most
definitely not. Given this, instead we follow the lead of our separatedness condition, and define our
analogue of compactness relative to a base scheme.

In topology, a proper map f : X — Y is one in which the inverse image of a compact set is compact.
This is the correct way of thinking of ‘relative compactness’ in the setting of topological spaces. However,
in this sense, when working with schemes, almost every morphism is proper. Indeed, if we deal with
Noetherian schemes, which are Noetherian topological spaces, every subset of a scheme is compact, so
every map between Noetherian topological spaces is proper in the topological sense. This is not very
a helpful condition, so, following our treatment of separatedness, we analyze an equivalent definition of
proper maps.

Recall that if X and Y are locally compact Hausdorff spaces, then f : X — Y being proper is
equivalent to f being universally closed. That is, in topology, if g : Z — Y is another continuous map,
then there exists a fibre product:

XxyZ={(z,2) e X xZ: f(z)=g(2)}

equipped with the subspace topology. The map f is then universally closed if f is closed, and the
projection X Xy Z — Z is also closed for every topological space Z. It is easy to check that these two
descriptions of properness are equivalent in the setting of locally compact, Hausdorff spaces.

In the setting of schemes, the definition of universally closed is the same:

Definition 3.7.1. Let f: X — Z be a closed morphism of schemes, i.e. f takes closed subsets to closed
subsets”’. Then f is universally closed if for every Z-scheme Y the projection X xz Y — Y is also
closed. In other words a closed morphism is universally closed if it closed under base change.

Now, we know what the analogue of Hausdorff is in the category of Z-schemes, so we need a good
analogue of what it means for a Z-scheme to be locally compact. However, we have already encountered
such an analogue, indeed if X if of finite type over Z, i.e. if f : X — Z is of finite type, then this morally
feels like X being locally compact in the usual sense. This motivates our definition of proper morphisms
and ‘compactness’ in the category of schemes:

Definition 3.7.2. Let f : X — Z be a morphism of schemes. Then f is a proper morphism if f
separated, of finite type, and universally closed. We call any Z-scheme f : X — Y a proper Z-scheme,
or proper over Z if f is proper.

So our usual analogues of compactness, and proper maps in algebraic geometry are proper morphisms
and proper Z-schemes respectively We wish to show that proper morphisms are local on target, stable
under base change, and closed under composition. It clearly suffices to prove the following:

Lemma 3.7.1. Universally closed morphism are:
a) Local on target.
b) Stable under base change.

¢) Closed under composition.

59Note that this does not mean that f is a closed embedding!
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Proof. Let f : X — Z be a universally closed morphism, and ¢ : Y — Z be any morphism of schemes.
Let {V; = Spec C;} be an affine open cover of Z, and {U;; = Spec A;; }, {W;, = Spec B;i} be affine open
covers of X and Y such that U;; and Wy, map into V;. We want to show that f|;-1(v;) : YV = Viis
universally closed. First note that f[;-1(y;) is indeed a closed map, as if S C f ~1(V;) is a closed subset
then S =T N f~1(V;) for some closed T'C X. We have that:

fl00)(8) = A1) NV,

so since f is closed, it follows that the restriction is too. Now note that f=1(V;) xv, Y = f=1(V;) xy,
g 1(V;). We already know that 7y : X — Y — Y is a closed map, so it’s restriction to the open set
S (Vi) xv, g~ (Vi) must now also be a closed map, hence f|;-1(y;) is again universally closed.

Now suppose that f|;-1(y,) is a universally closed map for all i. We first claim that f is closed. We
have that f(T') N'V; is closed for all 4, hence:

Y\ f(T) :Um\ (F(T)NV;)

which is an infinite union of open sets and thus open. It follows that if f|;-1(y;) is universally closed for
all @, then Ty |s-1(v;)xy. g-1(v;) is closed for all 4, so the same argument above shows that 7y is closed,
implying a).

To show b), we need to show that my : X Xz Y — Y is universally closed. Let h : Y/ — Y bea YV
scheme, and note that:

(X X2Y) ny/ =X Xz(Y ny/)
=X XZyI

The map my+ : X Xz Y" — Y’ is closed, and is equal to the map 7wy : (X xzY) Xy Y’ — Y’ composed
with the above isomorphisms, hence my : (X XzY) xyY" — Y” is closed as well, so my is also universally
closed.

To show ¢), let f: X =Y, and g: Y — Z be universally closed maps. We see that go f is a closed

map, so we need only show that it is universally closed. Let Y’ be a Z-scheme, then we need to show
that mys : X xz Y’ — Y’ is a closed map. We have the following commutative diagram:

XxzY —fxld— Y xgY —7ny — Y’
] il i
| | |
X f Y g VA

where f x Id comes from the following diagram:

X Xz Y’
\
\ Ty !
fxId

~
Y xzY — 7y —5 Y’
forx ‘ ‘
TY h
l l
Y 9— 7

The right and outer squares are cartesian, so it follows as that the left square is cartesian as well. We
have that f is universally closed, so f x Id must be a closed map. It follows that my: = mys o f x Id is
the composition of closed maps and is thus closed. Therefore we have that g o f is universally closed as
desired. O

We now have the following corollary:

Corollary 3.7.1. Proper morphisms are local on target, stable under base change, and closed under
composition.
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Proof. This follows because separated maps, universally closed maps, and maps of finite type are all local
on target, stable under base change, and closed under composition. O

Note that if a scheme is proper over a field, i.e. X — Speck is proper for a field k, then X is in a
sense ‘compact’. We now demonstrate that AZ is not proper over C:

Example 3.7.1. Clearly the map A¢ — SpecC is closed, separated, and of finite type. We need to show
that this morphism is not universally closed. Consider the scheme morphism 7 : A% x¢ AL — AL. This
morphism comes from (up to isomorphism) the ring homomorphism C[y] < Clz1,...,2z,+1]. Consider
the closed subset V(z1 - -z, 11 — 1), we claim that:

Clet, ..oy Xpg1]/{x1 - g1 — 1) ZCla1, ..o Tz oz,
which is an integral domain. Indeed, note that there is a map:
(C[l'la B ;xn+1} — (C[xlv s 7x’n]il71“'ﬂ3n

given by x; — x; for i« < n, and 2,11 — 1/(21...2,). This map clearly factors through the quotient
hence we have well defined map:

¢:Clay, ..., 1]/ (@1 g1 — 1) = Clze, .., Tn)ayoa,
Now note that there is map:
Clz1, ..., xn] — Clz, ..y X1/ (x1 Tpy1 — 1)

given by the composition of the inclusion map with the map with the projection map. We have that
[€1 «--@x,] is invertible in Clz1,...,zy41]/ (@1 Tpt1 — 1) so the there is a well defined map:

Y :Clay, ..., Tpleym, — ClX1, .o xpga]/ (@1 Xy — 1)

These are then clearly inverses of one another, so we have that the two rings are isomorphic. As the
localization of an integral domain is an integral domain, it follows that x1 - -- 2,41 — 1 is irreducible.

The induced projection map then takes (xy -+ 2,41 — 1) C V(z1 - 2p41 — 1) to the zero ideal, which
is the generic point in A{. It follows that m(V(z1 - - - x,, —1)) cannot be closed, so the map A% — Spec C
is not universally closed.

We now see that all closed embedding’s are proper:

Example 3.7.2. Let f: X — Z be a closed embedding, then f is separated, of finite type and closed.
We need only show that f is universally closed, but closed embeddings are stable under base change,
som: X Xz Y — Y is a closed embedding as well. It follows that m must be a closed map, hence f
universally closed, and thus proper.

For our first nontrivial example we show that Py — Spec A is proper, however, we need to be able to
characterize the scheme-theoretic fibre of a scheme morphism. In other words, for f : X — Y, we would
like to know how to make sense of the preimage of f~1(y) for y € Y as a scheme.

First note that in the category of topological spaces, if f : X — Y is continuous map, then we can
naturally identify f~!(p) with {y} xy X, where {y} < Y is the inclusion map. In the category of schemes,
we can naturally equip {y} with a scheme structure given by Speck,, where k, is the residue field. We
define a scheme morphism g : Speck, — Y by first defining the topological map to be n = (0) — y, and
the sheaf morphism g% : Oy — 9xOspeck, by first noting that if y € U then Ogpecy, (g7 (U)) = ky, and
if y ¢ U then Ospeck, (0) = {0}. We thus define g* on open sets by:

. foeqoy ifyeU
gU(){[sy]Eka ifyeU

60

which trivially commutes with restriction maps”’. This then motivates our following definition:

Definition 3.7.3. Let f: X — Y be a scheme, then the for any y € Y, the scheme theoretic fibre
over y, denoted X, is given by Speck, xy X.

60Note that by Corollary 1.3.1 we have that g is a monomorphism, as the stalk map gy : (Oy )g(y) = (Ospeck, )y is always
the projection (Oy )y — ky
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Note that this naturally has the structure of a scheme, so it is mainly important to show that there
is a natural identification with elements in the fibre over y and elements in Speck, xy X.

Lemma 3.7.2. Let f : X =Y be a morphism of schemes. Then there is a natural identification between
Spec ky xy X with the fibre f~1(y).

Proof. We have the following diagram:

Xy ax — X

| |

Ty f

l l
Spec ky 9——Y

We first want to show that the image of 7x is the fibre f~1(y), and then demonstrate that mx is a
homeomorphism onto it’s image. Note that if suffices to check this on an affine open cover of X, so
let {V; = Spec B;} be an affine open cover of Y, and {U;; = Spec 4;;} an open cover of X such that
f(Ui;) C V; for all i and j. It follows that:

Xy = USpec ky Xv; Uij
ij
We will show that 7x|spec kyxv,Ui; = TU;; 18 a homeomorphism onto Us; N fy) = f\[}; (y). Moreover,

supposing that y € V; as otherwise Speck, Xy, U;; is clearly empty, we can write y as a prime ideal
p C B;, so ky = k, = B,/m,,. Suppressing the ¢ and j notation for clarity, we have the following diagram:

Spec By /m, @ g A —— mv — Spec A

Ty flu

| l

Spec By, /m,, g—— Spec B

where it is understood that g is now the morphism Spec B,/m, — Spec B induced by the localization
map followed by the projection to the residue field. Now note that:

Spec By /m, @3 A = Spec(B, @ A)/ (m, ® 1)

and that A is a B algebra via the ring homomorphism ¢ : B — A inducing f|y. We define A, to be
#(B~p)~LA, and claim that:

B, ®p A= A,
We have a map:
B:By,®@p A— A,
given on simple tensors by b/s®a +— ¢(b)-a/¢(s). Moreover, we have a ring homomorphism A — B, ® A
given by a — 1 ® a. For all ¢(s) € ¢(B \ p), we have 1 ® ¢(s) is invertible, as 1 ® ¢(s) = s/1 ® 1, which

has inverse given by 1/s ® 1. Tt follows that there is ring homomorphism:

a:A, > B,®A
a/p(s)—1/s®a

These maps are clearly inverses of each other so we have that:
Bp Rp A= Ap
Now note that under the map 8 we have that:

Blmy @ 1)) = {a/d(s) € Ay a € (P(p))} = (B(p)/1) C Ap
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so it follows that we have the following isomorphism:
Spec By /my, @ A = Spec A,/ (¢(p)/1)

The projection 7y is now induced by the ring homomorphism A — A, — A,/ (¢(p)/1), and the projection
7, is given by the composition By /m, — B,/m, ®p A = A,/ (¢(q)/1). In the category of commutative
rings, we thus have the following commutative diagram:

A/ (P(p)/1) —mom — le
T T
B

L

By fmy «——v
where 7; is the localization map, and 7 is the quotient map. Let p € Spec B, then:

flg' () ={a € Spec A= 67" (a) = p}
However, clearly from the commutativity of the first diagram, we have that my(Spec A,/ (¢(p))) C
£~ (p), so we need to define an inverse map 7 : f|;'(p) — Spec A,/ (¢(p)).
Let q € Spec A satisfy ¢~!(q) = p, implying that ¢(p) C q. We first show that:

(mi(a)) ={a/s € Ap:acq}

is a prime ideal. This is clearly an ideal by construction, so suppose that a/s,c/t € Aq such that
ac/st € (m(q)). It follows that ac/st = d/r such that d € g, hence there exists some u € ¢(B \ p) such
that:

u(acr — dst) =0

Note that u,r, s,t € ¢(B\p), hence u,r,s,t ¢ ¢(p) C q. We thus have that acru € q, so ac € q, so either
a or c are in q. Note that (m(q)) is not all of A, as otherwise we have that q N ¢(B ~\ p) # 0, which
would imply that ¢=1(q) N~ (A(B \p)) # 0, so pN B~ p # () which is a clear contradiction.

Let ¢ = m o m; since (m(q)) clearly contains (¢(p)/1), we have that 7((m;(q))) is a prime ideal of A,.
We thus define n(q) € Spec A,/ (¢(p)/1) by:

n(a) = {la/s]: a € q}

which clearly then satisfies (q) = (1/(q)) = 7({(mi(q))). Let Uy, 1) be a distinguished open of Spec A,/ (¢(p)/1),
then we see that:

0 (Uayyy) ={a € flg' (p) : [a/1] ¢ (¥(q))}
={q€ fy'(p):a¢q}
=U. N flg' (p)

which is open in f(jl(p). Since U, N f\al(p) form a basis we have that 7 is indeed continuous.
We see that ¥ =1(n(q)) = q, so 7y on = Id. Now let q € Spec A,/ (#(q)), then:

N~ (a)) = {[a/s] s a €Y7 (@)}

Suppose that [a/s] € g, then [a/1] € q, and a € ¥ ~!(q). Now suppose that [a/s] satisfies a € ¥~1(q),
then [a/1] € q so [a/s] € q as well. It follows that n(x)~!(q)) = q hence n o7y = Id, and 7y is a
homeomorphism onto f|;;*(p).

Since the above argument holds for all affine opens Speck, xv, Uy;, it follows that 7x : X, — X is a
homeomorphism onto f~!(y) implying the claim.

O
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We can now show that P’ is proper.

Example 3.7.3. Note that P} = P} xz Spec A, so if P;; — SpecZ is proper, we have that Py — Spec A
is proper, as proper morphisms are stable under base change.

We have already shown that P}, is separated, and it is clearly of finite type, so we need only show that
f Py — SpecZ is universally closed. Let g : Y — SpecZ be any Z scheme, then we want to show that
P} xzY — Y is closed. As we have shown, being closed is local on target, so it suffices to show that for
any open affine U = Spec A C Y that 7 : Pj xz Spec A 2 P, — Spec A is a closed map.

Let Z = V(I) C P, where I = (g1, g2, -..) is a homogenous ideal. We need to determine the primes
p € Spec A which lie in 7(Z). In other words, by the preceding lemma, we want to know for which p,
the fiber 771 (p) N Z = Specky, x4 Z = Z, is non empty. We have that k, = Frac(A/p) which is an A
algebra, therefore, Z, C (P’),, and (P7), = P x4 Speck, = P} . It follows that Z, is a closed subset
of IP’ZF, and that locally

Zy N Specky x4 Uy, = Specky, ®a (Alzo, ... &n)z;)/(Tzy)o = Spec(kyzo, - . . Tn)z, )o/J

where J is the ideal generated by the image of (I, )o under the map (A[zo, ..., Znlz,)o = (kp[To, .-, Tnlz: )o-
Hence, Z, = V(I,), where I, = ([¢1], [g2],- . .), and [g;] is the image of the map:

Alzg, ..., xn] — kplzo,. .., 24)

induced by the projection = : A — A/p, followed by the inclusion A/p — Frac(A4/p). It follows that Z,, is
non empty if and only if V(1) # V((zo,...,2n)), hence \/I, § (xo,...,z,). Equivalently for all n > 0,
we have that:

<x07 . "xn>n §Z <[gl]v [92]7 e >

If S = kp[zo, ..., =y, then non containment is equivalent to the map:

@(A[‘Tov cee 7xn])d—deggi — Sd

fi — [figs]

not begin surjective for all d. Let dg = dimy, Sq°!, then this gives us a matrix with coefficients in A, dy
rows, and potentially infinite columns. All of the dy X dy minors of this matrix must have determinant
zero in kg, so the determinants lie in p, and therefore the ideal generated by these determinants, J, is
contained in p. It follows that the fibre Z, = 7~!(p) N Z is non empty if and only p lies in V(.J).

Now if p € w(Z), then n~!(p) C Z, hence Z, is nonempty so p € V(J), and if p € V(J) then the
fibre Z, is non empty, so p € w(Z). Therefore, 7(Z) = V(J), hence 7 is closed map, and Py — Spec A is
proper as desired.

We have the following corollary:

Corollary 3.7.2. Let Z C P? be a closed subscheme, then Z is proper over Spec A.

Proof. The map Z — Spec A is given by the closed embedding ¢ : Z — P’;, followed by the canonical
morphism P’ — Spec A from Example 2.3.1, then by Example 3.7.3, we have that this map is proper.
By Example 3.7.2; closed embeddings are proper, and by Corollary 3.7.1 proper morphisms are closed
under composition. It follows that Z — Spec A is proper. O

Recall that if f: X — Y is a continuous map between Hausdorff topological with X compact, then f
is proper. We wish to prove the algebraic geometry analogue of this result; i.e. if X and Y are S-schemes,
with X proper over S and Y separated over S, then any morphism f : X — Y is proper as well. This
will follow from the following lemma:

Lemma 3.7.3. Let X and X' be Y -schemes, and Y a separated Z-scheme. Then the map X xy X' —
X xz X' is a closed embedding.

61Note this that this is finite, as dimkp is equal to the partitions of d.
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Proof. This follows from Theorem 2.3.1 as the following diagram is Cartesian:

Xxy X — 5 X xz X'

Y —— Y xzY

It follows that the morphism X Xy X’ — X Xz X’ is the base change of Ay : Y — Y Xz Y, which is a
closed embedding. Since closed embeddings are stable under base change the claim follows. O

We can now prove the desired result:

Theorem 3.7.1. Let X and Y be Z-schemes, with Y separated over Z, and f : X — Y a Z-scheme
morphism. Then the following hold:

a) If X is universally closed over Z, then f is universally closed.

b) If X is proper over Z, then f is proper.

Proof. Let g and h be the morphisms which make X and Y Z-Schemes respectively. Let a be the unique
morphism making the following the diagram commute:

X\\f
\”‘\

XXzY —nav—Y
Id ‘ ‘
TX \}[
X 9—— 7
It follows that f factors as:
X a— X XzY — v — Y

We see that my is the base change of a universally closed morphism, and is thus universally closed. It
thus suffices to show that « is a universally closed. With X’ =Y, we claim that, up to isomorphism, « is
the top horizontal map making the diagram in Lemma 3.7.3 commute. Indeed, if X’ =Y then X xy Y
is uniquely isomorphic to X, with projections given by Id : X — X and f: X — Y. X then fits into the
following Cartesian diagram:

X —— 5 X xzY

f fx1d
Y —aA—Y xzY
By our work in Theorem 2.3.1, the horizontal map is then precisely the one defining «, so by Lemma 3.7.3

« is a closed embedding. Since closed embedding are universally closed by Example 3.7.2; we have proven
a).

Now suppose that X is proper over Z, then my is the base change of a proper map and is thus proper.
In particular « is a closed embedding which is proper by Example 3.7.2, so the same argument guarantees
that f is a proper map implying b). [

Example 3.7.4. Let X be a projective variety, then X is proper by Corollary 3.7.2 so any k£ morphism
X — Y with Y separated over k is proper. In particular, every k morphism from X to a variety Y is
proper.

We end the section with the following general result:

Theorem 3.7.2. Let P be a property of a morphism of Z-schemes f : X — Y such that P is closed
under composition and stable under base change. Then if f : X — Y and g : X' — Y’ both satisfy P
then the induced morphism f x g: X xz X' =Y x5 Y’ satisfies property P.
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Proof. Let h and h' be the morphisms making Y and Y’ Z-schemes, and ¢ and ¢’ the morphisms making
X and X’ Z-schemes. We have that f x g comes from the following commutative diagram:

XXZX/
\
\ goT x/
fxg

\
Y xzY — 7y —3 Y’
forx ‘ ‘
Y h
l l
Y h——— 7

It is clear that f x g =Id x g o f x Id, so it suffices to show that f x Id and Id x g both satisfy proper
P. We have the following commutative diagram:

XXz X —fxld— Y xz X' —nxr— X'
|

TV‘X W‘y q/

| | |
X f Y h Z

The right square is Cartesian, and since ho f = ¢, and wxs o f x Id = wx- the outer diagram is Cartesian,
so the left square is also Cartesian. Since the left square is Cartesian, it follows that f x Id is the
base change of f, and thus satisfies property P. Now note that we also have the following commutative
diagram:

YXZX/ilng*}YXZY/ — 1y — Y
i) A i
| | |
X’ 9 Y’ R VA

The right square is Cartesian, and the outer square satisfies ' o g = ¢/, and 7wy oId X ¢ = 7y, so it is
Cartesian as well. It follows that the left square is Cartesian, and that Id x g is the base change of g,
so Id x g satisfies property P as well. Since P is closed under composition, we have that f x g satisfies
property P as well. O

It immediately follows that nearly ever property of morphisms we have studied in this chapter is stable
under fibre products as in the above discussion.

3.8 Affine Morphisms

In this section we introduce affine morphisms, though it will more fruitful to study special types of affine
morphisms as in the next section.

Definition 3.8.1. Let f : X — Y be a morphism of schemes, then f is affine if for every open affine
V C Y, we have that f~1(V) is also affine.

Example 3.8.1. Any closed embedding is an affine morphism. Any open embedding is an affine mor-
phism.

We prove the following structure result regarding schemes:

Lemma 3.8.1. Let X be a scheme, and Ox(X) = A. Suppose that g1,...,9, € A generate the unit
ideal, and that Xy, is affine for each i, then X = Spec A.

Proof. Recall that:

Xy, ={r € X : (gi)o ¢ mz} (3.8.1)



3.8. AFFINE MORPHISMS 194

is an open set in X. Moreover, since the g; generate the unit ideal in A, we have that for every affine

open U C X, g;|u generate the unit ideal of Ox (U). It follows that the distinguished open Uy, C U
cover U, however by our work in Proposition 2.1.2 we know that:
nglU = Xgi nu

It follows that X, cover X as if x € X, then there is an open affine U containing x, and thus an 4 such
that = € Uy,|,,, hence x € X, and |J; Xy, C X.

Set X, = Spec 4;, and X;; = X, N X,,. Since each X, is affine, by our work in Proposition 2.1.2,
we have that each X;; is a distinguished open in both Spec A; and Spec A4;, thus:

Spec(4;)

lv>

~Y ~Y
9j|Xi = iy = SpeC(Aj)gi|xj

The rings Ox(X,,) and Ox(X;;) have canonical 'x (X) module structures given by by the restriction

J

maps 9§q_ and 9))&,7,. There is a natural map
a:O0x(X) — P ox(Xy,)
J

SH(S|XQJ_>

where by (s|x, ) we mean (s|x, ,...,s[x,, ). This map is an injection as the X, cover X. We define
another map:

B:@P ox(X,,) — P Ox (X))
j k<j
(55) = (sk5)

where:

(skj) = (sklxi; — silxe,)
Note that S oa =0, as:
B(slx,,)) = ((slx, ) x5 = (slx,, )x,) = (slxu; = slx,) = 0
Similarly, if a((s;)) = 0, then we have sections s; € Ox (X, ) such that for all k¥ and j:
S5l xi; = Sklxu,

It follows by the sheaf axioms, that there exists an s € &x(X) such that s X,, = 8j- We have thus shown
that ker 8 = im «, and so we have the following sequence of &x (X) modules:

0— ﬁx(X) — @ﬁx(ng) — @ﬁx(Xk])
J k<j
hence the following exact sequence of A modules:
0—>A—)@Aj—>@z4k]
J k<j
We can localize®” the sequence at g;, to obtain the exact sequence:
0— Ay — @(Aj)gi\xgj g @(Akj)nglxw
J k<j

Note that first morphism, which we denote «;, is induced by the unique ones which makes the following
diagram commute:

A

0%, — A

Tg; QXQJ'
X

| v

i

gi\xj

62We take this on a faith for the moment. A precise proof is given in greater generality in Lemma 5.3.1.
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where (o); is the jth component of the map a;. Moreover, the second morphism is given by:
Bi @ﬁx(in) — @ﬁX(ij ﬂXi)
J k<j
(S]) — (5k|inr‘1Xj - Sj‘inﬂXk)

Finally, note that (A;)g,| .
of the restriction map 9§§ We wish to show that («;); is an isomorphism.

is A; as g;|x, is invertible in A;, so the map («;); is given by the localization

Let a/gk € Ay, satisfy (a;)i(a/gF) = 0, then, since g; maps to an invertible element, we have that a/1
also maps to zero. We claim that «;(a/1) = 0; indeed, we have that («;);(a/1) = 0 by assumption, and
that:

(ai)j(a/1) =(u);(mg, (a))
=(alx;,)lx;,
—alx,,
=(alx;,)lx,;

Since 9;91 = 9))2 = Id, it follows that:

alx;, = (@)i(mg,(a)) = (a;)i(a/1) = 0
hence (a;);(a/1) =0 for all j # i as well. By exactness, have that a/1 = 0, hence («;); is injective.

Now let s € A;; then s|y,; € (Aj)|fi|Xj for all j, hence we have an element (s;) € ®j(Aj)|fi‘Xj' It
follows that:

Bi((s5)) = (sklxpnx; — sjlx;inx,)

but:

Sk|inﬁXj =S Xik XijﬂX]' =S XijﬂXj

and similarly for j, hence 3;((s;)) = 0. It follows by exactness that there exists some a/gF € A,, such
that a;(a/gF) = (s;), hence (q;); is surjective. Therefore, we have A, = A;, and so X,, = Spec 4,,.

By Proposition 2.1.2, there is a natural map f’ : X — Spec A induced by the identity map A —
Ox(X). Furthermore, since the g; generate the unit ideal in A, we know that U,, cover Spec A. The
morphism:

f/|X9i :Xgi — Ugi,
is the one induced by the ring homomorphism:
Agi — Ox (ng)
a/gf — alx,, - (gilx,,) 7"

however this is precisely («;);, which we just showed was an isomorphism. Since f’ restricts to an
isomorphism on the inverse image of an open cover of Spec A, we have that X = Spec A O

Proposition 3.8.1. Affine morphisms are local on target.

Proof. Suppose that f : X — Y is an affine morphism, and let V' C Y be an affine open. We wish to
show that the morphism f|s-1¢yy : f~Y(V) — V is an affine morphism as well. Well, let W C V be an
affine open, then, in particular, W is an affine open in Y, and (f|;-1(v)) (W) = f~1(W) which is affine
by assumption. It follows that f|;—1(yy: f ~1(V) — V is an affine morphism as desired.

Let f: X — Y be a morphism, and let {V; = Spec B;} be an affine open cover such that f|;-1(y,) :
f~Y(V;) — V; is an affine morphism. By assumption, each f~1(V;) is affine so set f~1(V;) = Spec A4;, and
let V = Spec B C Y be an arbitrary open affine of Y. We have that:

V:UVmV
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By Lemma 2.1.1, each V; NV can be covered by open affines:
v,nv = Ju;
J

where U;; is a distinguished open affine in V; and V. Hence:
v=Ju;
ij

and each U;; satisfies:

(Fly-rv) " Uy) = 71 U;) = (flp-2 )~ (Uij)

But f|s-1¢v,) : Spec A; — Spec B; is a morphism of affine schemes, and Uj; is a distinguished open, hence
(fly=2(v;)) 1 (Uij) is a distinguished open of Spec A; and thus an affine open of f~1(V). It follows that
V = Spec B admits a cover of distinguished opens U;; such that f~1(U;;) C f~1(V) is an affine open.

We have thus reduced the result to the following problem: if f : X — Spec B is a morphism of
schemes such that there is a cover of Spec B by distinguished opens {Uy, }7, with f~1(Us,) affine, then
X is an affine scheme. Let ¢ : B — Ox(X) be the unique ring homomorphism inducing f; by our work

in Proposition 2.1.2, we know that f=1(Up,) = Xo(v;)- Since b; generate the unit ideal in in B, we have
that ¢(b;) generate the unit ideal in &'x(X). Therefore, by Lemma 3.8.1 we have that X is affine, hence
if flr1v) f~YV;) = V; is an affine morphism, then f is an affine morphism. O

Corollary 3.8.1. Morphisms between affine schemes are affine. In particular, let f : X — Y be a
morphism of schemes, and {U;} an affine open cover of Y, then f is affine if and only if f~1(U;) is an
affine scheme for all i.

Proof. Let f : Spec A — Spec B be a morphism of affine schemes. Let V' C Spec B be an open affine
scheme, then we would like to show that f=1(V) is an affine scheme.

Set V = SpecC, and set X = f~1(V). Then we have have morphism g : X — SpecC given by
flg=1¢vy. We can cover Spec C with distinguished opens U,, which are also distinguished opens of Spec B,
hence g~*(U,,) are open affines, as f is a morphism of affine schemes. In particular, if ¢ : C — Ox(X)
is the unique morphism inducing g, then g='(U.,) = Xy(c,). Since ¢; generate the unit ideal in C, ¢(c;)
generate the unit ideal in Ox (X). It follows by Lemma 3.8.1 that X is affine, hence morphisms between
affine schemes are affine.

Now let f: X — Y be an affine morphism; then for any open affine cover {U;}, we have that f~1(U;)
is open by definition. Conversely, if f~(U;) is an affine scheme, then g1y - Y U) — Ui is a
morphism of affine schemes, and thus an affine morphism. It follows by Proposition 3.8.1 that f is an
affine morphism. O

We of course need to also check that affine morphisms are stable under base change, and that the
composition of affine morphisms is affine:

Proposition 3.8.2.

a) Affine morphisms are stable under base change.

b) The composition of affine morphisms is again affine.
Proof. For a), let f: X — Z be an affine morphism, and g : Y — Z be any morphism. Let {V;} be an
affine cover of Z, then {W; = f~1(V;)} is an affine cover for X, and we can obtain an affine open cover of
{Ui;} of Y such that g(U;;) C V; for all j. We need only show that ' (U;;) is an affine scheme; indeed

we claim that 7y (Uy;) = W; xv, U;, which is manifestly an affine scheme. For ease of notation, set
S = 7,1 (Ui;), then Ty |s(S) C Ui, and we have that:

fomx|s(S) =gomy|s(S) C Vi
It follows that:

Tx|s(S) C fTH (Vi) =W
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We thus have unique morphisms 7y, : S — Uy; and 7w, : S — W; such that iy, o my
tw, o My, = Tx|s. Moreover, these morphisms make the following diagram commute:

= my|s and

ij

S — U — Uij

ﬂI’i gluy;
Wi — f‘wi — VL
Now suppose that we have morphisms py, : @ — W; and py,; : Q@ — U;; which make the relevant diagram

commute. Then by composing with open embeddings, we obtain a unique morphism ¢ : Q@ — X Xz Y
such that the following diagram commutes:

LU;; OPU,
¢>\
Lw, opw,; XXZYTFY*}Y
) g
l l
X f— Z

We first claim that ¢(Q) C S. Indeed, we have that
7-‘-Y((b(CQ)) = Uy, opUi'(Q) - Uzg

hence:
Q) C 7y (Uiy) =5
Therefore, there exists a unique map ¥ : @ — S such that tg o ¥ = ¢. We need to check that that ¢
makes the relevant diagram commute. We see that:
Ly © (Tu,; o) =myls ot
—my o150
=Ty 0 ¢
=lui; °PU;

and similarly that:

tw; © (TrWi ° ¢) = lw; °Pw,

Since open embeddings are monomorphisms, it follows that the following diagram commutes:

Q

AN

¥

AN

S — U — U’Lj

W 9luy,

| !

Wi - f‘wi — ‘/'l
so S satisfies the universal property of W; xy, U;; and is thus affine. It follows by Corollary 3.8.1 that
7y is an affine morphism, as desired.

For b),let f: X - Y, and g : Y — Z be affine morphisms, then clearly we have that for any affine
open U C Z, that f~(g~1(U)) is affine; it follows that go f is an affine morphism implying the claim. [
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3.9 Finite and Integral Morphisms

In this section, we discuss finite and integral morphisms of schemes. Recall that a morphism of rings
¢ : B — A s finite if it makes A a finitely generated B module. That is, there is a finite set {ay,...,a,}
such that any a can be written as:

for some b; € B. Often times the notation ¢ is suppressed and we write b; - a;. Furthermore, a morphism
¢ : B — A, is integral if every element of A is integral over ¢(B). That is, every a € A is the root of some
monic polynomial in ¢(B)[z]. If a finite morphism, or an integral morphisms is injective, i.e. an inclusion
of rings, then they are called finite extensions, or integral extensions respectively. In either case, we will
often suppress the notation ¢(p) for a polynomial in ¢(B)[z], and simply write p € B[z] with evaluation
on A understood to be the one induced by ¢.

Definition 3.9.1. Let f : X — Y be a morphism of schemes, then f is finite if for every open affine
V C Y we have that f~!(V) is affine, and the induced morphism f| ;-1 () of affine schemes comes from a
finite morphism of rings. Similarly, f is integral if for every open affine V' C Y we have that f=1(V) is
affine, and the induced morphism f|;-1(y of affine schemes comes from an integral morphism of rings.

Note that finite and integral morphisms are examples of affine morphisms. We need to show that
finite morphisms are closed under composition before moving forward:

Lemma 3.9.1. Let f: X =Y and g: Y — Z be finite morphisms. Then go f is a finite morphism.

Proof. This statement clearly reduces to the following: if ¢ : C — B, and ¢ : B — A are finite, then
¥ o ¢ is finite. Suppose ¢ and ¢ are finite, then there exists {by,...,b,} and {ay,...,a,} which generate
B as a C-module and A as a B-module. Let a € A, then there exist [3; such that:

a= Z¢(5i) D
i=1

There exist ¢;; such that each 3; satisfies:

m

Bi = w(cif) - b
j=1

hence:

n m

a= Z Z¢(¢(Cij)) “p(bs)a;

i=1 j=1
hence the set {¢(b;) - a; : 1 <i<n,1 <j < m} generates A as a C module, which is finite, so ¥ o ¢ is
finite. O

We also demonstrate the following relationship between integral and finite morphisms:

Proposition 3.9.1. Let f : X — Y be a finite morphism, then f is integral. If f : X — Y is integral
and locally of finite type, then f is finite.
Proof. For the first statement, it suffices to show that if f : Spec A — Spec B is finite then it is integral.
This then reduces to the case that if ¢ : B — A is a finite morphism then it is integral.

Suppose ¢ : B — A is finite, then A is a finitely generated b module, hence there exists aq,...,a, € A
such that for all a € A there are by, ...,b, € B satisfying:

a:b1a1+"'+bnan

We want to show that any a € A is the root of a monic polynomial in ¢(B)[z]. First note that we have
a surjective map of B-modules:

m: B 5 A

(bl, e ,bn) — Zaibi
=1
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and that for any a € A we have B-module endomorphism v, € Endg(A) given by s — a - s. For each i
we have:

a-a; = E bija]‘
ij

for some b;; € B. This gives us an n x n matrix T with coefficients in B given by:

bll bnl
T = :
bln bnn
The following diagram then commutes:
Ben T—— A
i /ll)(l
Bo" T—— A

Let p € Blz], and consider p(T) and p(,), where in the latter polynomial p is technically a polynomial
in ¢(B)[z] as p is acting on elements of a via the ring homomorphism ¢. The following diagram then also
commutes:

Bo®n T— A
| |
p(T) p(¥a)
! !
B® ——nx—— A

as it would commute for any endomorphism of A and it’s induced matrix T. Suppose that p(T) is the
zero morphism, and let @ € A. Then there exists (by,...,b,) € B®" such that w(by,...,b,) = a’ so:

P(a)(a’) = p(a) o (b1, ..., bp) = o p(T)(b1,...,bn) =0

so p(1),) is also zero. If p(1p,) = 0, then p(a) is also zero as the ring homomorphism a — v, is injective;
it thus suffices to show that there exists a polynomial p € B[x] such that p(T) = 0.

Note that if B is a field then this holds by the Cayley-Hamilton theorem. Consider the surjection:

F: Z[Z‘U] — B
Tij — bij

and the inclusion:
G : Zlwi;] — Qi)
where Q(X;) is the field of fractions Frac(Z[z;;]). We have an induced ring homomorphism:
F': Endgp,,,)(Z[zy]") — Endp(B")
which is given by®?:

P11 - Pnmi F(Pu) F(pm)

Pin ot DPnn F(pln) Tt F(pnn)
and a similar inclusion:

G/ : Endz[w”](Z[l’U]n) — EndQ(w”)(Q(aZ”)")

63Since both Z[z;;]™ and B™ are free modules of rank n, their endomorphism rings are n X n matrices with coefficients
in their respective rings.
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Let:

T11 ot Tpl
T =

Tin - Tpn

then F'(T") = T. Since Q(z;;) is a field, there is a monic polynomial ¢ € Q(z;;)[y] such that ¢(G'(T")) = 0.
This polynomial is given by det(y - I, — G'(T")), where I,, is the n X n identity matrix. Since each
component G'(1");; € Z[z;;] C Q(z45), it follows that ¢ € (Z[zi;])[y] C Q(i5)[y], and ¢(T") = 0. We
have an induced ring homomorphism F" : (Z[z;;])[y] — Bl[y], and it follows that:

0 =F"(¢(T")) = F"(q)(F'(T")) = F"(q)(T)

so p = F"(q) is a monic polynomial in B[y] which has T as a root. By our earlier discussion it follows
that p(a) = 0, and since a € A was arbitrary the map ¢ : B — A is integral, implying the claim.

For the second statement, it also suffices to show that if ¢ : B — A is an integral morphism which
makes A a finitely generated B-algebra then ¢ is finite. Let {a1,...,a,} generate A as a B algebra. Then
morphism:

Blzy,...,x,] — A
Ty — Q;

is surjective. Moreover, for all a € A, there exists a monic p € B[y| such that p(0) = a. Let p; € B[y]
satisfy p;(0) = a;, and let d; = deg(p;), then we claim that the set:

{a/" - ap™:0<m; <d; — 1}

generate A as a B module. Let a € A, then we have that:
a= Y bijgaf ay
i1rin

for some b;,...;,,, then we need only show that each i; < d; — 1. We prove this by induction on n; if n =1
then we have that a can be written as:

a= Zbiail
Now ¢(p)(a1) = 0, so:
adt = —(bg, _1aP 7 4 -+ by) (3.9.1)

We need only show that any af”’m for m > 0 is in the B-span of {a} : 0 < i < d; — 1}. The base case
m = 0 is proven, now suppose m — 1th case so that:

T @) o = (Va4 )
:a({llbiil—l 4+ H4ag- b6
Since a‘fl can be written as in (3.9.1), when n = 1 we have that A is a finitely generated B module. Now
supposing the n — 1th case, we have that the sub algebra A’ C A generated by {a1,...,a,_1} is a finite
B module. Since ¢(B) C A’, we have that A is integral over A’, and A is clearly finitely generated over
A’ by a,, hence A by the n = 1 case we have that A is a finite A’ module. By Lemma 3.9.1, it follows
that A is a finitely generated module with generators given by:

{a7™--ap :0<m; <d; — 1}
as desired. 0

Corollary 3.9.1. Let ¢ : B — A be a ring homomorphism, and ai,as € A be integral over B. Then,
a1 + ag, a1 - as, and b - a; are integral elements over B.
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Proof. Let A’ C B be the B algebra generated by a; and as. The same induction argument in the
second part of Proposition 3.9.1 then shows that A’ is a finite B module®”, and thus A’ is integral over
B implying the claim. O

Example 3.9.1. Consider the map Q — Q, where Q is the algebraic closure of Q. This is integral by
construction, but is not finite as Q is not a finite dimensional Q-vector space. Indeed, suppose that Q is
n dimensional as a Q vector space, and consider the polynomial ™! — 2; this polynomial as n + 1 roots
over C all of which must lie in Q ~ Q. These roots are all linearly independent hence Q contains an n + 1
dimensional Q-linear subspace, and Q — Q can’t be finite.

Note that when dealing with varieties over a fixed field k, then every morphism is of finite type®®.
Indeed, let A and B be finitely generated k algebras, with generating sets {b1,...,b,} and {a1,...,am}.
if ¢ : B — A is a morphism, then consider the induced morphism:

¢ Blwy,...,om] — A
T; — a;

which on B acts by ¢. This map is surjective as k C B, hence if:

a=plai,...,am)

for some p € k[z1, ..., %], then p € Blxy,...,2,], and ¢'(p) = a. It follows that A is a finitely generated
B algebra so any morphism of varieties must be of finite type. It follows that in this setting we have that
integral morphisms and finite morphisms between varieties are the same.

We now proceed with the rest of our standard results:
Proposition 3.9.2. The following hold:

a) Integral morphisms are stable under composition.

b) Finite and integral morphisms are stable under base change.

¢) Finite and integral morphism are local on target.

Proof. Asin Lemma 3.9.1, a) clearly reduces to the following: if ¢ : C — B, and ¢ : B — A are integral,
then v o ¢ is integral. Suppose that ¢ and 1 are integral; let a € A, then there exists a monic polynomial
p € Blz] such that p(a) = 0. Set:

p(x) =bo+brz+---+a"

and let B’ C B be the C algebra generated by {bg,...,b,}. Note that B’ is integral over C' as B is
integral over C hence B’ is a finite C module. Let A’ C A be the B’ algebra generated by a, then A’ is
obviously finitely generated over B’, and integral over B’ by Corollary 3.9.1, so Proposition 3.9.1 show
that A’ is finite over B’. We thus have the composition:

C—>B — A

is a composition of finite morphisms and is thus finite. It follows by Proposition 3.9.1 that C — A’ is
integral, thus there exists a monic polynomial ¢ € C[y] such that ¢(a) = 0. Since a € A was arbitrary we
have that C' — A is integral as well.

We now have that b) reduces as: if ¢ : B — A is finite/integral, and and ¢ : B — C' is any morphism,
then the induced map C — A ®p C is finite/integral. Suppose that ¢ is finite, and let {a1,...,a,}
generate A as a finite B-module. We claim that S = {a; ® 1,...,a, ® 1} generates A ®p C as a C
module. Indeed, since A®p C' is generated as an abelian group by simple tensors, it suffices to show that

64This is because the argument only uses that the generators are integral.
65Not locally of finite type, because every variety is quasi-compact, hence we can take every open cover to be finite
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any a ® c lies in the C span of S. Well, for some b; € B:
a®c= <Zaibi> ®c
= Zl(aibi) ®c
= iai ® (bic)
= zl:(ai ®1) - (1®bc)

as desired“°.
Now suppose that 1 is an integral morphism, then by Corollary 3.9.1 we need only show that a ® 1 is

integral over C'. We know there exists a monic polynomial p € B[z], so consider it’s image in C[z], which
we also denote by p. This polynomials image A ® g C[x] is given by:

1@p)(z)=1by) + - (1®by)z"
then:

1@p)(a®1)=1by)+---(1®1)(a" ®1)
=aQ@by+---+a" @b,
=by®1+a"®1
=(p(a)) ® 1
=0

so C — A®p C is an integral, implying b).

For ¢), suppose that f : X — Y is an integral/finite morphism, and U is any affine open of Y, and
set V = f~1(U). We need to show that f|y, : V — U is integral/finite. Note that by Proposition 3.8.1,
we have that f|y : V — U is an affine morphism, and that any open affine ove U is an affine open of Y,
hence (f|v)|(f,)-1 () = flf-1) must come from an integral/finite morphism of rings by the definition
of integral /finite morphisms. It follows that f|y is integral/finite.

Let {U; = Spec A;} be an open affine cover of Y, and {V; = f~1(U;) = Spec B;} be the corresponding
open cover of X. Suppose that each f : X — Y is a morphism with each fl|y, integral/finite, and
let U = SpecA C Y be an affine open of Y. Since f is affine by Proposition 3.8.1 we know that
f~1(U) = Spec B is affine. By Lemma 2.1.1, we can cover Spec A with open sets which are simultaneously
distinguished in Spec A and Spec A; for some i, hence there exists a distinguished open cover {U,, } of
Spec A such that the induced morphism f~'(U,,) — U,, is integral/finite. Let ¢ : A — B be the
ring homomorphism induces f|¢-1(yy, then we have reduced the problem to the following situation: let
{a1,...,a,} C A generate the unit ideal, and the induced map ¢; : A, — Bg(a,) be integral /finite, then
¢ is integral/finite.

First suppose that each ¢; is finite; then there exist s1;,...,8n; € Bg(q;) which generate By (,,) as an
Aaj module. We can write each s;, as:
Si = LU
i ki,
T plag)™

for some b;, € B, some k;; € N. Since 1/a; € A,,, it follows that we can take our generators to be of the
form:

for all 4;. This gives us a finite set {b;; } C B, which we claim generates B as an A module; let N = |{b;, },
and consider the morphism of A modules:

Y A®N B

(ai,) — Z Z @i; bi;
i g

66Recall that the canonical C' module structure on A ®p C is given by cla® /) = (1®¢) - (a ® ).
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Let 7 : B — C be cokernel of this map, then since cokernels commute with localization®”, we have that
the induced map 7a; : Bg(a;) — Cr(g(a,)) 18 the cokernel of:

a;)

which is surjective hence Cr(g(q;)) = 0 for all j. Now let ¢ € C, then e/l € C7r(¢ (a;)) = 0, hence there
exists some m; such that W((b(a]))mw = 0. The a; generate the unit ideal, so a 7 generate the unit ideal
as well, hence 1 = a’" a5, therefore:

i %
c=1-c¢c= Zﬁ(qﬁ(a;-njozj)) cc=0
J
hence C' = 0 and so 1) is surjective.”®

Now suppose that each ¢; is integral. Let b € B, then for all j, b/1 € Bg(a;) is the root of a monic
polynomial p; € A, [z]. Note that A, [z] = (A[z])a,; let:

bn. —1 b
_on; J n;—1 0
pj—aj]+ﬁ$] ++a70
i J
There exists a M; such that:
. ‘ by, bl
a;"p; = aj a4 T T -

There thus exists a p} € Alz] such that p};/1 € (A[x])q; is equal to a ’p;. Since ¢(a])Mﬂ'p](b) =0
it follows that there is an L; such that ¢(a;)LitMip;(b) = 0. Moreover if we set ¢; = a - pj, then
gj(b) =0, and ¢;/1 = aM +L
again, we have that the set {a**,... aX"} generates the unit ideal, hence there are h; such that:

1= Z hjaJKj
J

’pj. Let N be the maximum degree of the g;, and let m; = N —n;. Now

so we define g € A[z] by:
=2 hjz"™;
J
Note that each x™7g; has degree N, and that the degree N term of ¢ is given by:

n, _ N K; N
quhxfa " =z Ehjaj =x
J

hence ¢ is a monic polynomial in A[x] We claim that ¢(b) = 0, however this is clear as ¢;(b) = 0 for all
j. It follows that ¢ : A — B is integral, implying the claim.

O

Our goal is to now further justify the the nomenclature ‘finite morphism’ in the sense that we wish to
prove that these maps have finite fibres. Let f : X — Y be a finite morphism, and recall that the scheme
theoretic fibre of y € Y is given by:

Xy = Specky xy X
Note that if U = Spec A C Y is an affine scheme containing y then we have the following isomorphism:
X, = Speck, xp fH(U)
If f is finite then it is affine as well, and so with f~1(U) = Spec B, it suffices to show that:
X, = Spec(ky ®4 B)

is a finite topological space which ultimately amounts to showing that k, ®4 B has finitely many prime
ideals. To do so we will need to develop the theory of Artinian rings, a class of rings which satisfy a
condition dual to the Noetherian one.

67See xyz
681f this feels like like there is some sheaf business going on here, that’s because there is!
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Definition 3.9.2. Let A be a commutative ring, then A is commutative if every strictly decreasing chain
of ideals:

ILLDIbDI3D---

terminates.

One quickly sees that being Artinian is a much less reasonable finiteness condition than being Noethe-
rian. Indeed, let A = Z, then the following chain never terminates:

22 542 D8Z D - -

so Z is not Artinian. Furthermore, in contrast to Theorem 3.4.1, we have that A[zy,...,x,] is never
Artinian as the following chain never terminates:

() D (i) DD (af) D

Example 3.9.2. Let A = k™ with the ring structure given the canonical product ring structure. Then
we have that every ideal is a vector subspace and the length of any chain of ideals is bounded above by
n+1, hence must be finite. It follows that A is Artinian (and Noetherian). Moreover, any finite k-algebra
is Artinian, and any ring that is finite as a set is also Artinian, i.e. Z/nZ.

The following is an analogue of Lemma 3.4.2:

Lemma 3.9.2. Let A be a Artinian, then the following hold:
a) If S is any multiplicatively closed subset then S™1A is Artinian.
b) If I C A is an ideal then A/I is Artinian.

Proof. For a) let:
J1DJp D

be a strictly descending chain of ideals in S™'A. If 7 : A — S~ A is the localization map, then we have
that:

a Y J) or N (J) D -

is chain of ideals in A. For some n this must terminate, hence for all m > n we have that 7=1(J,,) =
771(Jy). It now suffices to show that (m(7~1(J,,))) = Jm for any m. Clearly, we have the inclusion
(7(77Y(Jm))) C Jp; let a/s € Jy, then a/1 € Jy, ;and a € 771 (J,). It follows that a/1 € 7(7 =1 (),
hence a/s € (m(7~1(J;,))) implying the equality.

For b), we employ the same argument; however since 7 : A — A/I is surjective we automatically have
the equality (m(7 =1 (J))) = Jm. O

The above gives us the following strange result:

Proposition 3.9.3. Let A be Artinian, then every p € Spec A is mazimal. In particular, A is an integral
domain if and only if it is a field.

Proof. Let A be Artinian, and p € Spec A, then by Lemma 3.9.2 we have that A/p is an Artinian integral
domain. Let [a] € A/p be nonzero and consider the following chain:

([al) > ([a]?) -

which must stabilize, hence for some n we have that ([a]™) = ([a]"*'). This implies that [a]" € {[a]"*1)
so there exists [b] € A/p such that [a]"T1[b] = [a]™, thus:

[a]"([a] - [b] = [1]) = 0 = [a] - [b] =1 =0

as [a] is assumed nonzero. It follows that [b] = [a]~! hence every nonzero element of A/p is invertible so
A/p is a field implying that p is maximal. In particular, if A is an integral domain then (0) is prime and
thus maximal so A is a field. O
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We now need the following general lemma:
Lemma 3.9.3. Let A be a commutative ring, and q,p; € Spec A for 1 < i < n. Then (), p; C q if and
only if for some i we have p; C q.

Proof. We proceed by induction, the base case n = 1 is trivial, and if p; C q for some 4, then clearly we
have that (), p; C q. Assuming the n — 1th case, we have that:

n—1
<ﬂ m) Npn C4q
1=1

If ﬂ?;ll p; C g, we are done by induction, so assume that ﬂ?;ll p; Z q. Let a € p,, then by assumption
there exists some b € (ﬂ?;ll pi) such that b ¢ q. It follows that a - b € (ﬂ?;ll pi) N p,, which lies in q,

however q is prime hence either a € q or b € q, thus again by assumption we have that a € q. It follows
that p, Cq.

O

Proposition 3.9.4. Let A be Artinian, then Spec A is a finite topological space and carries the discrete
topology®”.

Proof. Suppose that Spec A has infinitely many maximal ideals, then we can choose some infinite sequence
{m;}$2, of pairwise distinct maximal ideals. Consider the following chain:

m;OmyNmgD---
We claim that this chain is strictly decreasing and never stabilizes, implying A is not Artinian. Suppose:
mpN---Nm, =myN---Nm, N My
then we have that:
myN---Nmy, Cmy N---Nmy, MMy C Myyg

It follows that one of the m; is contained m,, 1 by Lemma 3.9.3, hence m; = m,, 1 as these are all maximal
ideals. However this is impossible as all maximal ideals are pairwise distinct by assumption, so A is not
Artinian.

Supposing A is Artinian, we have by the above that Spec A has only finitely many maximal ideals.
Since every prime ideal is maximal, by Proposition 3.9.3 we have that Spec A is a finite topological space

equal to {my,...,m,} where each m; is a maximal ideal. We see that V(m;) = {m;} so the singleton sets
are closed, hence every subset of Spec A is closed, so every subset of Spec A is open implying that Spec A
carries the discrete topology. O

We can now show that finite morphisms have finite fibres as initially discussed:

Corollary 3.9.2. let f: X =Y be a finite morphism, then for all y €Y, the fibre X;, = Speck, xy X
is a finite topological space.

Proof. From our earlier discussion, if U = Spec A C Y contains y, and Spec B = f~1(U), then we have
that:

X, = Spec(ky ®4 B)

Since f is finite, we have that B is a finite A algebra, hence by Proposition 3.9.2 we have that k, ®4 B is
a finite k, algebra. Example 3.9.2 then implies that ky, ® 4 B is Artinian, hence Spec(k, ® 4 B) is a finite

2

topological space with the discrete topology by Proposition 3.9.4 as desired. O

69Recall that in the discrete topology every subset is open
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3.10 Finite Morphisms are Proper

We now end our discussion on integral and finite morphisms by connecting them to the other classes
of morphisms discusses in this chapter. In particular we wish to show that integral morphisms are
precisely those morphisms which are affine and universally closed, and finite morphisms are precisely
those morphisms which are affine and proper. To do so, as usual, we will need to prove a slew of results
from commutative algebra. Namely, this section could just as easily be called Lying Over, Going Up, and
Nakayama’s Lemma as we our desired results will be applications of these lemmas.

We begin with Nakayama’s Lemma; it comes in many flavors, and we prove five of them:

Lemma 3.10.1. Let A be a ring, I C A an ideal, and M a finitely generated A module. The following
then hold:

a) If IM = M then there exists and a € A such that [a] = [1] € A/I, and a- M = 0.
b) If IM = M, and
IcC ﬂ m
me| Spec A

then M = 0.

¢) Let N' and N be A-modules with M, N C N', and suppose that I is contained in all mazimal ideals
of A asinb). Then if NN =N+IM, N =N.

d) Let f: N — M be an A module morphism and suppose I is contained in all maximal ideals of A.
Then if f: NJIN — M/IM is surjective, f is surjective.

e) Suppose I is contained in all mazimal ideals of A, and let w: M — M/IM be the natural surjection.
If the image {f1,..., fn} C M generates M/IM then {f1,..., fn} generate M.

Proof. We start with a); note that:
IM={i-m:iel,me M}
Choose generators f1,..., f, of M, then we claim that the map:
a:I" — M
(b, sbn) — Y bifi
is surjective. Let m € M, then since IM = M we have that m = i -n for some i € [ some n € N.

However, n = ), a; f; as the f; generate M, hence m = )", (ia;) f;, and each ia; € I implying the initial
claim. In particular, we can write each generator as:

fi= Z Cij f 7
J
for some ¢;; € I. Consider the matrix with coefficients in A given by:

i1 Cin
S:

Cn1 " Cpn

which determines a morphism A™ — A™. Let 8: A® — M be the natural surjection”’ and set:

7T0Defined the same as «, just on all of A™.
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where the 1 is in the i¢th position, and note that S(e;) = f;. Then:

BoS(e) =B cijes | = cijfy=fi
J J

Now observe that for all <:
Bo(Id—S)(e)=0

hence (o (Id — S) is identically zero. Define a € A by:

a=det(Id— S) = > sgn(0)(b10(1) = C10(1)) *** (rio(n) — Cno(n))
O'ESn

where S, is the symmetric group. Note that [a] = [1] € A/I as if o is not the identity then under the
projection m: A — A/I, we have

T(0io(i) = Cio(i)) = T(Cio()) =0
and if o is the identity, then:
(01t — ¢i) = (1 — ¢y) = [1]
Moreover, recall that for any matrix T there exists an adjugate matrix adj(T) satisfying:
adj(T)-T =T -adj(T) = det(T) - 1d
hence for all 7, we have that:

a- fi =a-B(e)
=p(a-e;)
=0 o (det(Id — S)Id)(e;)

Now note that for any matrix T', we have that:

0
Ty - T :
BoT(e)=| + . + |-|fi
0
hence:
0
(Id=S8)-| fi| =0
0
and so:

Bo (det(Id — S))(es) = adj(id — §) - (1= S) - | £ | =0
0

implying that a- f; = 0 as desired. In particular, since a annihilates each generator, we have that a-M = 0,
implying a).
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For b) suppose in addition that:

IC ﬂ m

me| Spec Al

then with a as defined in a), we claim that a is invertible. Indeed, there exists ¢ € I such that a = 1+ 14,
and this ¢ € m for all m € | Spec A|. Consider the ideal (1 4 i), then if this ideal is not all of A, there must
be some m € | Spec A| such that (1 +¢) C m. However, ¢ € m as well so 1 € m which is a contradiction.
It follows that (i + 1) = A hence a invertible. Let m € M, then a - m = 0 by construction, but:

0=a"t-(a-m)=m

hence M = 0 implying b).

For ¢), suppose that N’ = N + I M, then note this implies that N’ = N + M as if n’ € N’ then we
have n’ =n+i-mforne€ N,i € I, and m € M. However i -m € M hence N' C N + M. Since N
and M are submodules of N’ it follows that N’ = N + M = N + IM. In particular, we have that N'/N
is finitely generated, as if {f1,..., fx} generate M, then we claim that {[f1],...,[fx]} generate N'/N.
Indeed, let [n'] € N'/N, then any class representative n’ can be written as n+m for n € N and m € M.
Any m € M can be written as:

m=> aifi

hence:
[n'] = Zai[fi] +[n] = Zai[fi]

Moreover we claim that I(N’/N) = N'/N; clearly we have I(N’'/N) C (N'/N), solet [n] € N’'/N. Then
any class representative n’ can be written as n + ¢ -m, hence [n'] =[i-m] =1i-[m] so [n'] € I[(N'/N). It
follows by b) that N’/N = 0, implying the claim.

For d), let f: N — M be an A module homomorphism. Note that f : N/IN — M/IM is induced
by mo f: N — M/IM and factors uniquely through the quotient as IN C ker(w o f). Obviously, we
have that M = im(f) + IM, and M is finitely generated hence by ¢) we have that im(f) = M and f is
surjective, as desired.

For e), I be as in b), and consider the natural projection 7 : M — M/IM. We have that M/IM
is finitely generated by {[f1],...,[fn]}. Let N C M be the submodule generated by fi,..., f,, then we
claim that M = N + IM. Let m € M, and consider [m]. Then:

= Yl = |t
It follows that there exists 8 € IM such that:
m=Y af;+p

hence m € N + mM. Since M is finitely generated, it follows by ¢) that M = N hence {f1,..., fn}
generate M. O

We need the following lemma for both Lying Over and Going Up

Lemma 3.10.2. Let ¢ : B — A be an integral morphism, I C A, J C B ideals, and T C B a
multiplicatively closed set. Then the following hold:

a) The morphism B — A/I is integral.
b) The morphism B/J — A/ (¢(J)) is integral.
¢) The morphism T~1B — ¢(T)"1A is integral.
Proof. To show a), recall that the composition of integral morphisms is integral, so it suffices to show

that 7 : A — A/I is integral. Let [a] € A/I, then p(x) = x — a € A[z] is a monic polynomial with [a] as
a root, hence 7 is integral.
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For b) let J C B be an ideal, then the morphism ¢ : B/J — A/ (¢(J)) is the unique morphism which
makes the following diagram commute:

B p— A

B TA

l l

B)J —v— A/(¢(J))

Let [a] € A/ (¢(J)), then a € ;" ([a]), and there is a polynomial p € B[z]:
p(x) = 2" 4+ by1z" " 4 4 b
of which a is a root. There is then a polynomial ¢ € B/J[z] given by:

q(z) = 2" 4 [bp_1]x"t + -+ bo

We see that:

q([a]) =[a]™ + [bn_l][a]"*l 4+ 4 b
=[a" + bp_1a" " + -+ bo)
=[p(a)]
=0

hence 1 is integral.

For ¢), the morphism ¢ : T"'B — ¢(T)" 1A is the unique one which makes the following diagram
commute:
B ¢ A

7B TA

l l

T'B —v— ¢(T) A

It suffices to show that a/1 and 1/¢(t) are the roots of monic polynomials in T-!B[x] by Corollary 3.9.1.
Let a/1 € ¢(T)~tA, then there exists a € A which maps to a/1 under 74. Let p € B[z] be given by:

P(z) = 2" + b2 4+ b

and satisfy p(a) = 0. Define ¢ € T~!B[z] by:
then:
as desired. For 1/¢(t) we claim that:

qg(z) =z — % € T 'Bla]

satisfies ¢(1/¢(t)) = 0. However, this clear as:

o1/0(0) = 55~ (3
which by the definition of ¥ reduces to:
L1,
o(t)  ¢(t)

as desired. O
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As the following example shows,

Example 3.10.1. If S C A is multiplicatively closed, and ¢ : B — A is a morphism of rings, then the
natural map ¢ : B — S~!A given by ¥ = 7 o ¢ is not in general integral even if ¢ is. Indeed, if this were
true then every localization would be integral as the identity map is integral; as a counter example take
the localization map C[t] — Frac(C[t]), then since C[t] is an integrally closed domain it follows that if
a € Frac(Ct) is integral then o € C[t]. However ¢t=% ¢ C[t] hence t~! can’t be integral over C[t] so the
map C[t] — Frac(C[t]) is not integral.

With our many flavours of Nakayama’s lemma at hand, as well as Lemma 3.10.2 we can now prove
the Lying Over, and Going Up result, beginning with the former:

Lemma 3.10.3. Let ¢ : B — A be an integral extension of rings, then induced map on schemes [ :
Spec A — Spec B is surjective.

Note that this is called ‘Lying Over’ because it implies that for any p € Spec B we can find a prime
q € Spec A which maps to it.

Proof. Given p € Spec B, we simply need to show that the fibre f~!(p) = Spec A x5 Speck, is non
empty. By Lemma 3.7.2, we have that:

S~ (p) = Spec A,/ (6(p)/1)

where A, = ¢(B \ p) L A. It follows that f~1(p) is empty if and only if (¢(p)/1) = A,, as the only ring
without a maximal ideal is the 0 ring.

The localization map ¢, : By, — A, is an integral morphism by Lemma 3.10.2. In particular, if
b/s € By, and ¢(b)/¢(s) =0 € A,, then there exists some ¢(t) € ¢(B \ p) such that
o(bt) =0

This implies b-¢ = 0, but then b/s = 0 € B,. It follows that ¢, is injective as well. Let m, be the unique
maximal ideal in By, then by the commutativity of the diagram:

B—9¢— A
| |
Tp Tp
! !
B, bp —> Ay

we have that (¢,(my)) = (¢(p)/1). Indeed, suppose that a/s € (¢(p)/1), then by definition, we have that
a € ¢(p), and s € (B \p). There is then a unique b € p, and ¢ € B \ p such that ¢,(b/t) = ¢(b)/P(t) =
a/s. Similarly, if a/s € (¢p(m;)), then a/s = ¢(b)/p(t) for some unique b € p, and t € B ~\ p, hence

a/s € (¢(p)/1).

The condition that (¢,(m,)) = A, is now more aptly written as m, - A, = A,. For the sake of
contradiction, suppose this holds, then we have that 1 € A, can be written as:

n
1= "m;-gi (3.10.1)

i=1
with m; € my,, and g; € A,. Take the subalgebra A" C A, generated by {g1,...,gn}, then A’ is integral
over By and finitely generated, hence a a finite B, module by Proposition 3.9.1. We then have that
(3.10.1) implies 1 € m, - A’, hence m, - A’ = A’. However, m, is the only maximal ideal of By, so by
Nakayama’s lemma’', we have that A’ = 0, contradicting the injectivity of ¢,. O

Going Up is now a borderline immediate consequence of Lying Over:

Lemma 3.10.4. Let f : Spec A — Spec B be an integral morphism, and p C p’ € Spec B. Let q € Spec A
satisfy f(q) = p, then there exists q' € Spec A containing q such that f(q') =p’.

Note that this is called ‘Going Up’ as it implies that we can lift chains of prime ideals.

"1Part b) of Lemma 3.10.1.
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Proof. Let ¢ : B — A be the ring homomorphism which induces f; in particular, ¢ makes A integral over
B. With p,p’, and q as stated, consider the induced map ¢’ : B — A/q. Note that by Lemma 3.10.2 this
map is integral. We claim that ker ¢’ = p. Indeed, let b € p, then ¢'(p) = [¢(b)], but ¢(b) € q as ¢(p) C q.
Now suppose that ¢’(b) = 0, then ¢(b) € q, so b € ¢~1(q) = p. It follows that the map B/p — A/q
is injective; in particular it is integral by Lemma 3.10.2 as (A/q)/¢'(p) = (4/q)/(0) = A/q. By Lying
Over we have that that the induced map Spec A/q — Spec B/p’” is surjective, so there exists a prime q’
containing q which maps to p’ as desired. O

Example 3.10.2. Let N : X — X be the normalization map of an integral scheme X. We claim that N

is integral, and surjective. First note by the proof in Theorem 3.3.1, where we define N on an affine cover
Spec A;, of X, that_N’l(Spec A;) = Spec A;, so N is affine by Proposition 3.8.1. On this open cover, N is
given by the A — A which is integral extension by definition, hence N is integral by Proposition 3.9.2. In

particular, by Lemma 3.10.3 we have that Spec A; — Spec A, is surjective for all i, hence N is surjective.
If f: Spec A — Spec B is a morphism satisfying:

For any p C p’ € Spec B, and q € Spec A with f(q) = p, there exists a q' € Spec A containing
q such that f(q') =p’.

we say that Going Up holds for f. In particular, Going Up is equivalent to f being a closed map:

Proposition 3.10.1. Let f: Spec A — Spec B be a morphism, then f is closed if and only if Going Up
holds for f.

Proof. Suppose that f : Spec A — Spec B is closed, and let ¢ : B — A be the ring homomorphism
inducing f. Let p C p’ € Spec B, and q € Spec A satisfying f(q) = p. Consider V(q), then f(V(q)) is
closed, and contains p, hence f(V(q)) contains the closure of p, V(p). Since p’ is contained in V(p), we
have that p’ € f(V(q)) hence there exists some q' € V(q) such that f(q") = g. It follows that Going Up
holds for f.

Now suppose that going up holds for f, and let V(I) C Spec A be a closed subset. Note that since
Spec A/T — Spec A is integral, we have that Going Up holds for Spec A/I — Spec A, thus clearly Going
Up holds for Spec A/I — Spec B. It thus suffices to show that if Going Up holds for f : Spec A — Spec B
then f(Spec A) has closed image.

Let Z = f(Spec A), and let p € Z. Then for any open set containing p we must have that U N Z # 0,
as other wise U® is a closed set containing Z, and thus contains Z. However, p ¢ U so p ¢ Z, a
contradiction. Hence, for all g ¢ p, we have that U, N Z # (. In particular, since Uy N Z = f(Uy(y)), We
have that Uy () is not empty for g ¢ p.

This implies that A, = ¢(B \ p) A is not the zero ring. Indeed, if A, is the zero ring that 1 = 0,
hence there would exist some g € B \ p such that ¢(g) = 0, but that would imply that Uy, is empty, a
contradiction. We now consider the composition:

Spec A, — Spec A — Spec B

where the first map is induced by the localization map m: A — A,. Now let g € Spec A, and consider
p’ = f(771(q)); we claim that p’ C p. Suppose the contrary, then there exists a g € p’ such that g ¢ p.
It follows that ¢(g)/1 € q, but if g ¢ p, then ¢(g) € ¢(B N\ p), so 4 = A,, a contradiction.

In particular, we have shown that there exists p’ C p € Spec B, and q’ = 7~ 1(q) satisfying f(q') = p’.
Since Going Up holds for f, it follows that there exists a q € Spec A satisfying " C q and f(q) = p.
Therefore, if p € Z, we have p € Z, so Z is closed, implying the claim. O

Lemma 3.10.5. Let f : Spec A — Spec B be induced by ¢ : B — A. Then, the closure of the image,
cl(f(Spec A)) is equal to V(ker ¢).

Proof. Set Z = cl(f(Spec A)). First, let p € f(Spec A), then p = ¢~!(q) for some q € Spec A. Since
0 € g, we have that ¢~1(0) = ker ¢ C p, hence p € V(ker ¢). It follows that f(Spec A) C V(ker ¢) hence
Z C V(ker ¢). Now by definition:

Z = N V(I)

f(Spec A)CV(I)

72Which is topologically equivalent to the map flV(q)‘
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If f(Spec A) C V(I), then I C ¢~ (p) for all p € Spec A. Let b € I, then ¢(b) € p for all p € Spec A, so
o(b) € 1/(0), i.e. there exists some n such that ¢(b)" = 0. This however, implies that b € y/ker ¢, hence
I C v/ker ¢, and we have that V(I) D V(ker ¢). It follows that V(ker ¢) = Z as desired. O

Lemma 3.10.6. Let f : X — Z be a surjective’ morphism of schemes, and g : Y — Z any other
morphism. Then the base change X Xz Y — Y is surjective.

Proof. Let y € Y, then we need to show that the fibre:
7y (y) = Speck, xy (Y xz X)
is not empty. Note that:
Specky xy (Y xz X) = Speck, xz X
Let z = g(y), then we also have that:
F71(2) k. Speck, = (X xz k) xj. Speck, = g~ *(y)
where the morphism making Speck, a k. scheme comes from composing the stalk map g, : (0z), —
(Oy), with the projection m, : (Oy), — k,. Since g is a morphism of locally ringed spaces, this gives

rise to a field morphism %k, — k,, which we take to induce the structural morphism of Speck, as a k.
scheme.

Y

Now since f~!(z) is not empty, we have that there is a non empty affine open U = Spec A C f~1(2).
It thus suffices to show that Spec A®y_ k, is nonempty. We claim that A®y_ k, is a nonzero ring, indeed
since A # 0 we have that A is a non zero k. vector space. Any k. basis then extends to a k, basis for
A ®y, ky of the same cardinality, hence A ®y, k, cannot be the zero vector space. Since every ring has a
maximal ideal, it follows that that W}jl(y) is non empty implying the claim. O

We now prove the first major result of the section:

Theorem 3.10.1. Let f : X — Y be a morphism of schemes. Then f is integral if and only if f is
affine, and universally closed.

Proof. Suppose f is integral, then f is automatically affine, so it suffices to show f is universally closed.
Since f is integral, it’s base change is integral by Proposition 3.9.2; so it suffices to show that an integral
morphism is closed. Clearly, it then suffices to show this in the case X = Spec A, and Y = Spec B, but
this follows from the fact Going Up holds for integral morphism, and Proposition 3.10.1.

Now suppose that f is affine and universally closed. It again clearly suffices to show that f is integral
in the case where X = Spec A and Y = Spec B, so let ¢ : B — A be the morphism inducing f. We want
to show that for all @ € A, there exists a monic polynomial p € B[x] such that p lies in the kernel of the
map ev, : Blz] — A, given by sending x to a. Consider the composition:

¥ Blx] = Alz] — Alz]/ {(ax — 1)

Let 3 € ker1, then with 3 =3, b;a’, there exists some polynomial ¢ € A[z] such that:

3 ob)a’ = (ar - 1)g

Letg=>)", c;z?, then in particular we must have that:
d(bi) =a-ci1—c¢

If deg ¢ = d, we claim that:

73Set theoretically.
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We rewrite the sum as follows:

d

d
D ob)r = (acig —e)at
=0

i=0
d
=aqa Z ci_lde_i - Z cimd_i
i=0 i=0

Now note that the c_; = 0, so we we can rewrite the first sum as:

d d
Z (b))t =q Z ™t — g Z ezt
=(a—1z)- Z cizd?
i=0

which certainly maps to zero under the morphism B[z] — A sending z to a, hence p € kerev,. Moreover,
if bp = 1 then p is monic, which would imply A is integral over B. It thus suffices to show that ker
contains a [ satisfying by = 1.

We claim this is equivalent to Spec B[z]/(ker ¢+ (x)) being empty. Certainly, if 5 € ker ¢ with by = 1
then ker ¢ + (x) = Blz|. If ker ¢ + (x) = B[z], then that means 1 € ker ¢ + (z) hence:

1=0F+zg

for 8 € kert, and g € B[x]. However this clearly implies that by = 1.
Note that the morphism ¢ : B[x] — A[z] is induced by the following diagram:

A®z Z[X] <—\

‘\ 1d

B ®7 Z[X] — s Z]X]

LAOQ T
LB

| W

Z

B

By Theorem 3.7.2, we have that ¢ induces a unique morphism f’ : Spec A[x] — Spec B[z] which is
universally closed. We claim that f'(V(ax — 1)) = V(ker); note that f’|y(sz—1) is induced by v, hence
the closure of the image of f'|v(az—1) is equal to V(kert)) by Lemma 3.10.5. However, f is a closed map,
so it’s restriction to any closed set is a closed map, hence f/'(V(az — 1)) = V(ker) as desired.

We claim that:
(Blz]/ kery)) @pp) B = Blal/(kery) + ()
Indeed, the morphism evq : B[z] — B is what makes B a BJx] algebra, hence by our work in Lemma 3.1.2:
(Bla)/ ker ) @ppe) B = B/ (evo(ker )
It thus suffices to show that:
B/ (evo(ker)) = Blz]/(ker ¢ + (z))
Consider the composition:
B — B[z] — Blx]/(ker ¢ + (x))

and note that if b € (evo(ker)), then:

b= Z bip; (0)
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where p; € kerv. If we consider b as an element in b[x], then b is in ker ¢ + (z) as it is given by:

> bipi =Y bi(pi — pi(0))
where clearly each p; — p;(0) € (z). It follows that this factors through the quotient to give us a well
defined homomorphism:

F: B/ {evo(kerv)) — Blz]/(ker ¢ + (x))

Now consider the composition:

Blz] - B — B/ {evo(ker¢))
If p € ker ¢ + (x), then p can be written as:

p=q+ap

where ¢ € kere), and p’ € Blz]. It follows that ¢(0) € (evg(ker)) hence this map also factors through
the quotient to yield a well defined homomorphism:

G : Blz]/(ker ) + (x)) — B/ {evo(ker)))
Now let [p] € Blz]/(ker ¢ + (x)), then:
G([p]) = [p(0)] € B/ (evo(ker ¢)))
while:
F([p(0)]) = [p(0)] € Blz]/(ker ¢ + (x})
However:
[Pl = [p(0)] € ()

so F'o G = 1d. Clearly G o F' = Id, so the two are isomorphic as desired. It follows that the following
diagram is Cartesian:

Spec Blz]/(ker ¥ + ()) ——— Spec B

|

Spec B[z]|/ ker ¢y ————— Spec Blz]

Moreover, we claim that the following diagram is commutative:

Spec B ® 5] Alr]/ (ax — 1) ———————— Spec B[z]/(ker¢ + (r)) ———— Spec B

|

Spec A[x]/ (ax — 1) Spec B[z]/ ker{p ————  Spec Blz]

The right square is Cartesian, so we need only show the left square commutes, but this is equivalent to
the following diagram commuting:

B @ Blz] A[I]/ <CLI’ — 1> <—B

1

LA

Alz]/ {az — 1) Blz]/ ker ¢

Blz]/(ker ¢ + (x))
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However, 0 € B is equal to evo(z), hence in B ®p(,) Alz]/ (ax — 1):
0®[a]l =evp(z)®@1=1Q@[az]=1®1

so 0 = 1, and B ®p[,) Alz]/ (ax — 1) is the zero ring. It follows that the left square trivially commutes,
so by Lemma 2.3.4 the left square is Cartesian. Now note, that the morphism:

Spec Alz]/ {(ax — 1) — Spec B[z]/ ker ¢

is surjective as it is given by f’|y(az—1) With restricted image, so by Lemma 3.10.6 we have that the
morphism:

Spec B ®p[s) Alr]/ (ax — 1) — Spec B[z]/(ker ¢ + (x))

is also surjective. However, Spec B ®p[,] Alz]/ (ax — 1) is empty, hence Spec B[z]/(kery) + (z)) is also
empty, so by our earlier remarks Spec A — Spec B is integral as desired. O

We now proceed with showing that all finite morphisms are proper, though much of the leg work has
already been covered. We first need the following immediate result:

Lemma 3.10.7. Let f: X — Y be affine, then f is separated.

Proof. Since the property of being separated is local on target, and f is affine, it suffices to show this in
the case X = Spec A and Y = Spec B. However this clear by Example 3.6.2, hence f is separated. O

The above borderline immediately implies the following:

Theorem 3.10.2. Let f: X — Y be a morphism. Then [ is finite if and only if it is affine and proper.

Proof. Suppose f is finite, then f is automatically affine, and integral. It follows that f is separated by
Lemma 3.10.7, and universally closed by Theorem 3.10.1. Moreover, f is of finite type as every finite
morphism is automatically finite”. It follows that f is affine and proper.

Now suppose f is affine and proper, then f is affine and universally closed so it is integral by Theo-
rem 3.10.1. Since f is of finite type, we then obtain that f is finite by Proposition 3.9.1, implying the
claim. O

74In particular if A is finitely generated as B module, then it is finitely generated as a B algebra by the same generating
set.
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O'x Modules I: Towards Vector
Bundles

5.1 Definitions and Examples over Ringed Spaces

In Section 1.2 and Section 1.3 we broadly discussed sheafs of rings, abelian groups, and sets over topo-
logical spaces. In this chapter, we will extend these ideas to the category of modules over a commutative
ring. Let & be a sheaf of abelian groups over X , then prescribing an A-module structure on % (U) for
each U C X gives us a sheaf of a A-modules. However, what we would really like, is for the A-module
structure to vary with respect to a sheaf of rings on X, i.e. we want .#(U) to be an Ox (U) module for
all U C X. We define this precisely now:

Definition 5.1.1. Let (X, Ox) be a ringed space, and .% a presheaf on X. Then .7 is a presheaf of
Ox modules if: There exists a sheaf morphism:

mg : Ox X F — F

which makes .Z (U) an Ox (U) module for each U C X. A sheaf of Ox modules or a x module is a
presheaf of &'x modules that is also a sheaf. A morphism of presheaves of 0x modules is a presheaf
morphism F': % — ¢ such that the following diagram commutes:

ﬁX X F —mg — F
Id>‘<F I‘?
l l
ﬁX XY —myg —3 4G

A morphism of sheaves of &x modules is a morphism in the underlying category of presheaves of
Ox modules. We denote the category of presheaves of &x modules, and the category of sheaves of Ox
modules by Modg, and Modg, respectively. At times, we will refer to sheaves of 0'x modules simply
as ‘Ox modules’.

Example 5.1.1. Letting E — X be a smooth vector bundle over a smooth manifold X, by Example 1.2.2
we have that I'(—, F) is a sheaf on M; we wish to show that this is a C*° module. For each open U, we
define:

my : C®(U) x T'(U,E) — I'(U, E)

to be the usual multiplication of a smooth function with a smooth section of E over U. If (f,¢) €
C>®(U) x (U, E), we need to show that:

flo-olv=(f-Dlv

This is however true by construction, because f is an honest to god function on U with values in R, and
¢ is an honest to map U — E|y. Moreover, a vector bundle morphism over X F : E — E’ induces a
morphism of the underlying C'*° modules.

One readily checks that that Modg, and Modg, form abelian categories, and that the proof of
Theorem 1.2.1 holds essentially verbatim when one replaces the words ‘abelian group’ with ‘0’x module’.
We can also sheafify 0x modules, glue &x modules and their morphisms, and take stalks at a point x
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to get (Ox), modules. These facts are all borderline immediate given the content covered in Section 1.2
and Lemma 5.1.1, so we elect to not reprove these results in this section as there are more pressing
matters at hand. The main being that given a continuous map f : X — Y, the inverse image functor
f~1:Sh(Y) — Sh(X), does not send @y modules to @y modules, but to f~10y modules. We will
instead need to construct a different functor, called the pullback functor, which will combine tensor
products, and the inverse image functor. We begin with showing that sheafification commutes with finite
products:

Lemma 5.1.1. Let .Z and 9 be presheaves on X, then (F x 4)* is canonically isomorphic to F* x 4%,
In particular, if f: Y — X is a continuos map, then f~1(F x 4) = f~1.7 x f~19.

Proof. One might imagine there is a slick proof of this fact exploiting the universal property of products,
and sheafification, but as far as we can tell, there is no avoiding a direct computation with the definition
of sheafification, and stalks, hence we show the isomorphism directly.

First note, that clearly we have a canonical isomorphism (% X ¥4), & %, X %,, hence we can consider
elements of (.F x 4)* to be sequence (s,), where s, € %, x 9,. Let T2, Ty, denote the projections on
the level of stalks %, x ¥, — %,, F X 9, — 9, respectively induced by the projection morphisms on
presheaves. Then for all U, we claim that the map:

(Z x9N U) — [[ 7> [[ %

xeU zecU
(s2) — (772 (52)), (79, (s2)))

as image in .Z*¥(U) x 4%(U). Since doing the following for .# will be the same as doing it for ¢, we need
only show that for each = € U, there exists an open neighborhood V' of z, and a section ¢ € .#(U) such
that t, = mg,(s,) for all y € V. This is however clear; since (s,) € (F x 9)*(U), we have that there
exists an open neighborhood V of = and a section ¢ € . (U) x 4(U) such that t, = s,. Now note that
forally e V:

Tz (t)y = Tz, (ty) = Tzy(sy)
so we have obtained a map:
F:(F x9)U) — FHU) x 9*(U)

which clearly commutes restricts. This is also clearly an isomorphism on stalks, so F' is an isomorphism
as desired, which must be unique by abstract nonsense.

To prove the second claim, by the first it suffices to provide an isomorphism:
LT <92 F < f,1'9

Our work in Proposition 1.3.5 demonstrates that .# — f,.% is a functor PSh(X) — PSh(Y"), and so
there are projection maps:

fplre [ (F D) = [T fime i F xG) = £
and so by the universal property of the product, these determine a morphism:
F:ff T x9G) — [ Fx f'9
given on an open set U by:
s (f,'mz(s), f, ' w29 (s))

To check that this is an isomorphism, it suffices to check that this is an isomorphism on stalks. Recall
that there are natural isomorphisms:

Fo (T X D)y =(F X D) p) = Ty % i)
and so if s, = [U, s], for y € U C Y, then:

(fy 7z )y(sy) = U, £ ' mz ()]
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However, if s = [V,t], for t € F(V) x 4(V), and f(U) C V, then:
(fy 'mz) (V1) = [V, 7wz (1)]

Under the isomorphism (f, '.%), = .7, we have that:

U, f; 1z ()] /= Vimz (t)] = (12) £ (ty)
and similarly for we. It follows that up to isomorphism, the stalk map:

([ By 7 (F x Gy — [ Ty x £,
is the given by the map:

(F X D)) — Frw) X i)

try) — () ) (o)) (7)) g ) (Ep ()

which is an obvious isomorphism, implying the claim. O

Not only does Lemma 5.1.1 guarantee that the Mods, and Modg, behave mostly as expected, but
it also allows us to quickly demonstrate the following failure:

Corollary 5.1.1. Let f : X =Y be a morphism of ringed space, F an Ox module on X, and 4 an Oy
module on' Y. Then f..Z is an Oy module, and f~19 is an f~10y module.

Proof. We give f,.% the structure of an &y module by setting:
my : Oy (U) x (f+7)(U) — (f7)(U)
(5:0) = fir(s) - &
Since f[ﬁ] € (f.O0x)(U) = Ox(f~1(U)), this makes (f..#)(U) an Oy (U) module. Moreover, since the
restriction maps on f,.# are inherited from those on .%#, and thus respect multiplication, and since ff]

commutes with restriction maps, the collection my determines a sheaf morphism, hence f,.# is an Oy
module.

We now need to construct a morphism:
oy x [l — flg
By Lemma 5.1.1, and Proposition 1.3.5, we have that the defining map:
Oy x4 4
induces a morphism:
oy x ' — 'y
which one each open set U C X will make f~1¢(U) an f~10y (U) module as desired. O

Recall that if My and My are A modules, we can form their tensor product M; ® 4 M>. This tensor
product satisfies the following universal property: for every A bilinear map M; & My — N, there exists
a unique A-linear map M; ® 4 M> — N making the following diagram commute:

My ® My ——— N

My @4 Mo

With this recollection in mind, we form the following definition:

Definition 5.1.2. A 0x bilinear morphism of presheaves or sheaves of &x modules, is a morphism
of presheaves/sheaves 71 & Fy — ¢, such that for each U C X, 71 (U) & F2(U) — 4(U) is a bilinear
map. We define the tensor product presheaf by:

(7 %, 9)U) = F(U) @y ) 4 U)
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Obviously, we need to check that this is a presheaf, and while we are at it, we might as well prove
some desirable properties of the the presheaf.

Lemma 5.1.2. Let %1, %, be presheaves (or sheaves) of Ox modules, then the following hold:
i) The tensor product presheaf F ®%X 9 is a presheaf.
1) The tensor product presheaf satisfies the universal property of the tensor product in Modg, .

iti) For all x € X, there is a natural isomorphism (%, ®%X F2)z Z(F1)e Q6% , (F2)e-

Proof. We obviously start with 7). Let V' C U be open sets of X , we need to write down restriction
maps:

0y : F1(U) Qo () F2(U) — F1(V) @y (v) F2(V)
Denote the restrictions maps for .#; and % by (61)Y and (62)¥, then we have bilinear map:

F1(U) ® F2(U) — F1(V) & Fo(V) — F1(V) Qo (v) F2(V)

(s,1) — (slv, tlv) — (s|v) @ (t|v)
and so by the universal property of the tensor product, we get well defined restriction maps:

09 - 7, (U) Rox ) F2(U) — F1(V) @ox(v) F2(V)
s@t— (slv) @ (tlv)

which obviously satisfy 6}, o 0¥ = 0., making the tensor product presheaf, a presheaf.

For ii), we first need a bilinear sheaf morphism %, & %, — % ®%X 5. For each U, we have bilinear
morphism:

®I£] : ﬁl(U) D yg(U) — yl(U) ®ﬁX(U) gig(U)
(s,t) — st

We need only check that 0Y o @%, = @7, o0 6, however this clear as:
Qg o ®pU(t7 5) = eg(t ® 5) = t|V ® S|V = ®€/(t|V’ SV) = ®]\9/ °© ag(tv 5)

so the assignment U +— 0y defines a sheaf morphism. Suppose that F' : % %5 — ¥ is a a bilinear sheaf
morphism, then for each U C X, there is a unique ¥y which makes the following diagram commute:

F1(U) & Fo(U) —— 9(U)

F1(U) ®ex ) F2(U)
We need to show that 6 o Uy = Uy 0 Y. Consider the following diagram:

yl(U) ) yg(U) 70‘[‘/[0}‘_'[1 — g(V)

F1(U) ®ox ) F2(U)
and note that:

Ty 06y o@F =Uy 0P, 06y
=Fy o6y

:95 o FU
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while:
Ggo\I'Uo@)% :egOFU

so both 6/ o Uy and ¥y o §Y make the diagram commute implying equality. It follows that % ®%X Fo
satisfies the universal property of the tensor product in the category of presheaves.

For iii), we want to show (#1 @Y, #,), satisfies the universal property of the the tensor product.
The morphism ®P : F & Fy — F Ry F yields a stalk map QP : (F#1), ® (F2). — (S ®%X F2)z-
Now suppose that F : (%1)y ® (F2)y — M is an Ox , bilinear map. Now this is equivalent to the data
in the following diagram:

F1(U) & F(U) oy FAV) @ F(V)
\w ) /
\ /
(yl)z @ (ﬁZ)x
'
!

where the ¢y is bilinear for each U, In particular, each ¢y, gives a unique ¢y : 71 (U) Qo (1) F2(U) =
M such that the following diagram commutes:

v —— M

F1(U) & F(U)
®‘% YU
[

F1(U) @oxw) F2(U)

We claim that these commute with restriction maps; indeed, consider the following diagram:

F1(U) ® Fo(U) — pvot] — M

®LU / (2%
F1(U) ®ox ) F2(U)
then:
v o @ = ¢y = ¢y o Oy
so the diagram commutes. We also have that:

cpvoﬂgo@)%:gpvo@@oﬂg

=pv o by
so by uniqueness of the morphism, we have that:

YU = @y o8y

75This follows because it is true on the level of sets, and since F' is bilinear, and ¢ is linear, the ¢y must be bilinear. In
particular they are defined by ¢y = F o ¢y
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giving us a unique F’ which makes the following diagram commute:

F1(U) ®oy ) F2(U) oy F1V) Qox vy F2(V)

T~ —
~

(ﬂ\l ®%x :972)1

ElVad

|

M

9

YU

We thus now need only check that F” o @ = F. It suffices to show that:

F1(U) @ F(U) 0y F1(V)® Fo(V)

du ‘ dv
F'o®?
!
M
Note that ®P? is given by the following diagram:
F1(U) & Z2(U) o0y FV)e F2(V)
Yu \ / Yy
a7
oy TV ®(F2)z L
\ T /
(F1 @y, F2)a

It follows that:
Flo@h oy =F oy 0@ = puo®f = du
implying the claim. O

The next obvious step is to construct a tensor product in the category Modg, , and there is essentially
one way to do this:

Definition 5.1.3. Let .%; and %, be 0x modules’’, then the tensor product of &x modules is:
551 ®ﬁx 92 = (91 ®%X 92)11

We now wish to check that this is actually the tensor product in the category Modg, , i.e. that
F1 Qe Fo is satisfies the universal property.

Lemma 5.1.3. Let % and F5 be Ox modules, then %1 Qg Fo satisfies the universal property of the
tensor product in Modg, . Moreover, there is a natural isomorphism (F1 @6y F2)e = (F1)e Qox .. (F2)z

Proof. The second statement is an obvious consequence of Lemma 1.2.4. We obtain a morphism ® :
F1 B Fy — F1 Ry Fa, by setting ® = sho®P. Now suppose that F : .F & .Fy — ¥ is a bilinear Ox

761 .e. sheaves of Ox modules! This is the last reminder of this nomenclature.
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morphism. Then by Lemma 5.1.2 there exists a unique €x-linear morphism .%#; ®%X F9 — 9. By the

universal property of sheafification, there is then a unique @y linear morphism ' such that the following
diagram commutes:

T D Ty F 9
| 7
®P : EDa
L |
F ®%X F9g ——sh— Fq Koy o

In particular, we have that F o ® = F, and is the unique map making this diagram commute, hence
F1 Qe Fo satisfies the universal property as desired. O

Now note that if f : X — Y is a morphism of ringed spaces, we have a sheaf morphism f :
f~10y — Ox, which clearly makes Ox an f~'0x module. It follows that we can take the tensor
product f~1.7 ®f-16, Ox, which can now be viewed as an Ox module. Indeed, for each open set U,
the map given on simple tensors:

Ox(U) x (LT &, OX)U) — (F7IF &1, 0X)(0)
(5,0 @1t) — ¢ @ (st)
commutes with restriction maps, and thus defines a morphism of sheaves. This morphism of sheaves

clearly makes f~1.% ®f-16, Ox a presheaf of Ox modules. We then compose with sheafification to
obtain a morphism:

Ox X f7135 ®§Z—1(§>Y Ox — fﬁlj Qf-106y Ox
and using the universal property of sheafification obtain a sheaf morphism:
Ox X LT @10, Ox — [TLF @14, Ox

which makes f~1.% ® -1, Ox an Ox module.

Definition 5.1.4. Let f : X — Y be morphism of ringed spaces, and .# an 0y module on Y. Then the
pull back of .Z is the Ox module f*.%, defined by:

T =f1F R0, Ox

Note that f* : Modg, — Modg, is obviously a functor by the fact that f=! is a functor, and the
universal property of the tensor product. Moreover, the stalk at x is canonically given by:

(f*F)z & Fa) By 500y OX .z

In the next section, using a sheaf theoretic version of the tensor-hom adjunction for modules, we will
be able to show that f* is left adjoint f, in the category of &x modules. For now we continue to prove
general statements regarding pullbacks and tensor products.

Morally tangential to the pullback, is a sheaf theoretic extension of scalars. In particular, if Ox — 0%
is a morphism of a sheaf of rings, and .# is an 0x module, we can make % and Ox/ module via:

f’zg\@ﬁx ﬁ;(

We now prove the following basic statements regarding tensor products:

Proposition 5.1.1. Let #,9 and A be Ox modules, 7' an 0% module, and ¥ is also an 0% module.
Then there are unique isomorphisms:

a) F Qox Y =29 Q6 F

b) (F Qoy 9) @y, H' =2 F D0y (4 @01, H')
) (FOY) Ry H Z(F BH)RQpy (F DY)
d) Ox ®ey F = F.
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Proof. Since sheafification is a functor PMod g, — Modg,, it suffices to show each statement this for the

presheaf tensor product. This is however clear, as for each open U C X we have the unique isomorphisms

a), b), ¢) and d) just of the underlying €x (U) modules .#(U),4(U), s (U). By the universal property,

all of these isomorphisms, will have to commute with restriction maps, and so they yield Ox linear

isomorphisms of presheaves of &'y modules, implying the claim. [
We wish to prove similar properties for the pull back, but we need the following lemma;:

Lemma 5.1.4. Let %, 4 be Oy modules, and f : X — Y a morphism of locally ringed spaces. Then
there is a canonical isomorphism:

f_l(y R oy g) = f_ly Qf-10y f_lg

Proof. Note that there exists a bilinear map .% & ¥ — % ®¢, ¢ given by the tensor product. Applying
the f~! we get the following natural bilinear morphism:

['Zof 'Y — fUTF R0, 9)
which on stalks is given up to isomorphism by the tensor product map:
®(@) * Fi@) ®Yj@) = Fp@) @0y, 5y Vs ()
By the universal property of the tensor product, there is then f~!@y linear module morphism:
F:f ' Qg ['9— [T R0, 9)

By the universal property of the tensor product, the map on stalks must then be the unique one making
the following diagram commute:

F i) © Gp(@) — @10 —> Fp(a) Oy ;) V()

@ f(x)

l

T 1(z) @by m) V()

which must be the identity. It follows that F' is an isomorphism on stalks and thus an isomorphism. [

We can now easily prove the following:

Proposition 5.1.2. Let %, and ¥ be a Oy modules, and f : X — Y a morphism of ringed spaces. Then
we have the following natural isomorphisms:

a) f*ﬁy = ﬁx
b) [(Feo9)=f*FafY
o) ['(F Qo 9) = [*F Qox [*Y

Moreover, if v : U — X is an open embedding, then *F = F|y.

Proof. For a), we have that by d) of Proposition 5.1.1:
f5Oy = f10y @16, Ox = Ox
For b), we have that by Lemma 5.1.1, and ¢) of Proposition 5.1.1:
M(Fe9) =" F oY) &0, Ox
~(fLF @ [7'Y) @510y Ox
2(fT'F @p10y Ox) @ (fT'Y Qp-10, Ox)
=f*Z o 'Y
For ¢), by Lemma 5.1.3, and a), d) and b) of Proposition 5.1.1:
(7 ®6, 9) :f‘l(ﬁ ®oy 9) Qf-16y Ox
2(fT1F @10y [T'9) Rp16y (Ox Roy Ox)
2f T Q10 [(fT'Y ®f-10, Ox) R0y Ox]
(' @10, Ox) ®oy [*Y
=f*F Qo [*Y
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For the final statement we have that by Corollary 1.3.2] d) of Proposition 5.1.1:

VF =N Q-16x Oy
=2F|v ®e6, Ov
>~ 7|y

We now provide an elementary proof that the tensor product functor is right exact — ®4 M.

Lemma 5.1.5. Let M be an A module, and :

0 N Ny N3 0

be an ezxact sequence of A modules, then the following sequence is exact:
N1 @AM —— No@a M —— N3@a M —— 0
Proof. Let f; denote the morphism N; — N;41, and f; ® Idps the induced map:
Ni@aM — Niy1 @4 M
We first show that fo x Id is still surjective. Let:

6:an®m1€Ng®M

then each n; = f(n;) for some n} € Ny, so the element:

a:Zni@mG]\b@M
i

satisfies:
fo®Id(a) =0

implying that fo ® Id is surjective as desired.
It is clear that im f; ® Id C ker(fy ® Id). Suppose that:

5=3"n@m; € ker(f2 ® 1d)

225

and recall that since the original sequence is exact, N3 = Ny/f1(N1). Note there is a canonical isomor-

phism”

Na/im f1 @4 M = (N2 @4 M)/(im(f1 ® Id))

as then 8 € ker(fo®Id) implies that up to some canonical isomorphism, [] = 0 € (Na®4 M) /(im(f1®1d)),

so B € im(f; ® Id) implying exactness.

O

Using the above, we wish to extend this right exactness to a statement about &x and 0y modules:

Proposition 5.1.3. Let
0 91 yg yﬁ’) 0

be an exact sequence of Oy modules. Then for any ¢ the following sequence is exact:
F1R0y Y —— F2Qp, Y —— F3Q0, 9 —— 0

In particular, f*: Mod(Y) — Mod(X) is a right exact functor.

77 After noting that clearly im f ® Id = im ¢ ® Id, where ¢ : im f; — No is the inclusion map.
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Proof. We will leverage Proposition 1.2.9 throughout this proof. The second statement will follow from
the first, as if

0 2 Fg T3 0
is an exact sequence, then:
0 —— 17 —— 1P —— 1% —— 0
must be exact, as on stalks it is given up to isomorphism by:
00— (F)f@) — (P @) — (F3)p@) — 0

which are exact because the original sequence was exact. This holds for all z € X, hence Proposition 1.2.9
implies that inverse image sequence is an exact sequence of f~!@y modules. It follows that if the tensor
product is right exact then:

f*yl —_— f*yg —_— f*yg — 0

is an exact sequence so f* is a right exact functor.

To see that — ®4, ¢ is right exact, note that on stalks we have:
(yl)y ®ﬁ’y,y gy — (ﬂZ)y ®ﬁy,y gy — (ﬁb’)y ®ﬁy,y gy —0

which is exact by Lemma 5.1.5. This holds for all y € Y so Proposition 1.2.9 implies the claim. O

We fix the notation that for any indexing set I, .# ' is the direct sum over:
F =P 7
=
In other words we want to take infinite coproducts, and not infinite direct products.”® We now list some
full subcategories of Mod x with the following barrage of definitions:

Definition 5.1.5. Let % be an Ox module, then % is a quasicoherent x module if for every
z € X, there exists an open neighborhood U of z, and indexing sets I and J such that we have an exact
sequence:

O —— 6} —— Fly —— 0

We say that % is a finite type if for every point x € X there exists a neighborhood U of = such that
there is a surjection:

ﬁ{}—)yb

for some n € N. We say that .# is a coherent 0x module if .% is of finite type, and for any open set
U C X, and every finite set {s1,...,sm} C F(U), the kernel of the induced map:

ﬁan%ﬁwU

is of finite type. Finally, .Z is said to be locally free for every point in x there exists an open neighborhood
U such that

Flu = 0}
If I is finite, we say that .# is finite locally free , and if we can always choose I to have cardinality n

we say that % is locally free of rank n.

We are particularly interested in ¢y modules which are quasicoherent, coherent, or locally free of
rank n, which at times we will call vector bundles. We denote their respective categories by QCoh, .,
Cohg, , and Vecg, .

78In the category of abelian groups, these do not agree when I is infinite. In particular, the infinite coproduct consists of
infinite sequences where all but finitely terms are nonzero, and the infinite product is all infinite sequences.
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Example 5.1.2. We briefly provide some justification for the term vector bundle. If 7 : E — X is an
honest to god vector bundle over a smooth manifold, and {U;} is a trivializing cover so that:

Y U;) = Uy x R*

then there exists a local frame {ej,...,e,} over 7~ 1(U;). In particular, this local frame induces an
isomorphism of sheaves:

F(_a E)|U7, = ﬁ{h
hence locally free sheaves of &x modules are our scheme analogue of vector bundles.
One might hope that we have the following chain of implications:
Z is locally free of rank n = % is coherent = .% is quasicoherent

however, as the next example shows, not every finite locally free module need be coherent. In fact the
following example shows that there exist locally ringed spaces where Ox is not even coherent over itself!

Example 5.1.3. Let:
X = Spec A = Spec (k[x,y1,vy2, .-/ {zyi}i21))
and take [z] € Ox(X). Then the induced map:
¢:O0x — Ox
given on opens by:

Ox(U) — Ox(U)
slv — slu - [2]lu
cannot have kernel of finite type. Indeed, if this were true, then for all p € X, we would have that the stalk

(ker ¢), is finitely generated Ox,, module. Let p = ([z], [t1],...), then Ox , = Ay, and ¢, : Ay — A, is
given by:

@) [a][a]

[s [s]

We claim that [y;]/1 € A, is nonzero for all 4. Indeed, if it were then there is some [s] ¢ p such that:

[s] - [y] = 0= sy € ({zyitizy)

implying that s;y; has a factor of x, so [s] has a factor of [z] in it as well. In particular, the [y;]/1 are
nonzero in Ay, and obviously lie in ker ¢, for all 7, so ([y1]/1,...) C ker ¢,. If [a]/[s] € ker ¢, then there
exists some [t] ¢ p such that :

1] - [z] - la] = 0= ¢ - (za) € ({zyi};24)

However, since [t] ¢ p, we have that ¢ cannot not have a factor of = or y; in it. It follows that za €
({xy;}524), and thus @ must be a sum of elements which have factors of y; in them. It follows that
ker ¢, = ([y1]/1,...), and so ker ¢, is not a finitely generated €x , module.

The desired implication is fixed if we require Ox to be coherent over itself. Indeed we have the
following lemma:

Lemma 5.1.6. Suppose that Ox is coherent over itself, then F is a coherent Ox module if and only if
it is of finite presentation, i.e. for every x there exists an open meighborhood U, such that the following
sequence is exact for some m and n:

oy — O —— Fly —— 0

Proof. Suppose .# is coherent, then for every x there is an open neighborhood of = such that .#|y is
finitely generated. In other words, if:

¢:ﬁg_>y|U



5.1. DEFINITIONS AND EXAMPLES OVER RINGED SPACES 228

is the surjection, we have an exact sequence:

0 ker ¢ oy Flv — 0

Since .Z# is coherent though, we have that ker ¢ is of finite type, hence there is a neighborhood of x and
open neighborhood V/, which must be contained in U"’, such that we have a surjection:

Oy — ker ¢|y
It follows that we have the following exact sequence:
oy —— O —— Fly —— 0

where the first map is the projection onto ker ¢|y; composed with the inclusion of ker ¢|y into O7F.

Now suppose that % is finitely presented Let {V;} be a cover of X such that we have an exact
sequence:
oy,

i

Bi = ﬁ‘r}z — o :755\/7 — 0

We claim that &

v; is the cokernel of 3;. However this clear as there is a unique morphism:
coker oy — Fly;,

such that the following diagram commutes:

6‘7}7 oy —— ﬁ{}j Bi F
~. =

N ~

coker oy

i

On stalks we have the following diagram up to isomorphism:

O, — i —s OF, Bie > T 0
™~

T O
Iy ~

coker a;

Since ;. is surjective we have that 6, is surjective. Note that the kerm, = im oy, by definition, and
im «v; , = ker f; , by assumption. We have ker 3; , = 7, ! (ker 6,), so:

kerm, =ima; , = 7, (ker 6,)
In particular, 7, 1(0) = ;! (ker §,), implying that:
0 =kerf,

because m, is surjective. It follows that 8, is an isomorphism, so 6 is an isomorphism.

Accepting for the moment that Cohg, is an abelian category,”™ it follows that .Z |y, is coherent for
each i. Now let {s1,...,8} C Z(U), and ¢ : O}, — F|u the associated map. Then for each i, we have
that ¢lunv, : Ovnv, = F|unv, must have kernel of finite type as each .#|y, is coherent. Since the V;
cover X, it follows that ker ¢ must be of finite type hence .# is coherent as desired. O

We have the immediate corollary:

Corollary 5.1.2. Let X be a locally ringed space such that Ox is a coherent Ox module. Then we have
the following chain of implications:

Z is locally free of rank n = % is coherent = F is quasicoherent

79This is because ker ¢ is only a sheaf on U.
80We prove this in Theorem 5.1.1.
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Proof. By Lemma 5.1.6 every coherent &x module is finitely presented and thus quasicoherent. Now
suppose that .# is locally free of rank n, then .# is locally isomorphic to 07}, so again accepting for the
moment that Cohg, is an abelian category, we have that there exists an open cover on which .Z|y is
coherent. The same argument at the end of Lemma 5.1.6 implies that .% is coherent. O

Now Vecg,, has no hope of being an abelian category as the kernel of a vector bundle homomorphism
between manifolds, is only a vector bundle when the map has constant rank on each fibre. Furthermore,
QCohg,, will be an abelian category when X is a scheme, but there are locally ringed spaces for which
this is not true; we will not spend time delving into counter examples. What is always true is that the
category of coherent modules over a ringed space is always abelian, a statement we will prove in this
section. Before embarking on this endeavor, we first prove a few key results about the categories QCoh
and Vecg, . We will need the following lemma:

Lemma 5.1.7. Suppose we have exact sequences of Ox modules:

F1 Fa F3 0

‘% % Y5 0

Then there exists an exact sequence of the form:
(F1 ®6x %) ®(F2®0x Y1) —— F2Q@0x Yo —— F3RQpx 93 —— 0

Proof. Denote by f; the maps #; — %11, and by g; the maps ¢, — ¥;+1. We construct the first map
in the claimed exact sequence, which we denote by 3, to be the direct sum of f; ® Id and Id ® g2, and
the second map to be the unique map fo ® go. All of these maps come from the obvious diagrams.

To show that this sequence is exact, it suffices to show this on stalks, and so we need only prove this
in the category of A-modules. So replacing .#; with M;, and ¥; with N;, and denoting the maps by the
same notation, we want to show that the following sequence is exact:

(M1 ®AN2)@(M2€BN1) —p— Mg ®A N2 — f2®g2 —> M3 ®AN3 — 0

The map fo ® go is surjective: if mg ® ng € M3 ®4 N3, then there exists some my € My and n3 € No
such that fo(me) = mg and go2(ne2) = ns, hence

f2 ® ga(ma @ na) = fa(n2) ® ga(n2) = nz @ m3
Since fo and g, are surjective, we have that:
M3 = My /im fi and N3 2 Ny/im gy
hence:
M3 ®4 N3 = My/im f1 ®4 Na/img; = (My ®4 Na)/(im(f1 @ Id) 4+ im(Id ® ¢1))

The submodule we are quotienting out by is precisely im 3, hence the sequence is exact by the same
argument in Lemma 5.1.5 O

Proposition 5.1.4. Let f: X — Y be a morphism of locally ringed spaces, and F an Oy module. The
following hold:

i) The categories QCohg, , and Vecp, are additive.

it) QCohg, and Vece, are closed under tensor products.
1it) If & is quasicoherent, then so is f*.F.
i) If & is locally free of finite rank n then so is f*%.

Moreover, and if f :' Y — X is a morphism of locally ringed spaces, pulling back induces functors
f*:QCoh,, — QCohg,. and f* : Vecg, — VecOy .
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Proof. Since each category is a full subcategory, and the 0 object obviously lies in each, we need only
show that the direct sums stay in their respective categories.

Suppose that .# and ¢ are locally free of rank n, then for each € X there exists U,V C X containing
x such that:

y‘U%’ﬁg and g|vgﬁ(}1
It is then obvious that on U NV
(FoD|vav 2 Fluav @Y\ vnv = Obay ® Oy = O35

so . @ ¥ is locally free of rank n + m.

Supposing that .# and ¢ are quasicoherent, we can via a similar argument above, find an open set U
on which there exists indexing sets I, J, K, and L such that the following sequences are exact:

Ol —— 0 —— Fly —— 0

o —— 0 —— Yy —— 0

hence the following sequence is exact:

oIK ol (F &Yy — 0

implying that both QCoh,, and VecOx are additive proving i).

Let .% and ¢4 be locally free of rank n and m respectively. Finding an open set U on which both are
trivial, and letting ¢ : U — X be the open embedding, we have that by inductively applying part ¢) of
Proposition 5.1.1:

(Z ®ox 9)lu 27 (F @0y Y)
~ -tz ®,-16y e
=27 |v Qe Yu
20y @0y Oy
gﬁg-Fm

as desired. We note that if .# and ¢ are not of finite rank, i.e. .F|y = 0/, and 4|y = G, then over U
there is an isomorphism:

(F @0y 9)|v = O

Indeed, this is true on the level of stalks, so the induced map will be an isomorphism.

Supposing that .# and ¢ are quasicoherent, and finding an open set on which we have the exact
sequences:

Ol —— 0 —— Fly —— 0

of —— 0 —— Yy —— 0

By Lemma 5.1.7, we have the following short exact sequence
(O} @6, OF) © (6}, 26, OF) —— O} @6, O —— (F @6y, 9|y —— 0

hence F ®¢, ¥ is quasicoherent by the preceding result regarding tensor products of locally free/free
sheaves proving ii).
For iii) let .# be an Oy module which is locally free. Then if .Z |y = O} we have by part a) and b)

of Proposition 5.1.2 :

[ Flraw 2 frop =
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where -1y is Ox restricted to f~1(U).
For iv), if # is a quasicoherent &y module, we have an exact sequence:
O —— O} —— Fly —— 0

for some open U C Y. Since f* is right exact by Proposition 5.1.3, we have by part a) of Proposition 5.1.2
that the following sequence is exact:

Oy = Of-rpy — ["Flp10) — 0
implying the claim. O

The goals for the the rest of this section are as follows: we wish to prove that Cohy, is an abelian
category, that the tensor products of coherent &'x modules are coherent, and that the pullback of coherent
Oy modules is coherent under suitable conditions, namely that both 0y and Ox are coherent over
themselves. We begin with proving that Cohg, is an abelian category, an exercise we break into stages.
We begin with showing kernels and cokernels are coherent.

Lemma 5.1.8. Let f: .7 — 4 be a morphism of coherent Ox modules, then ker f and coker f are both
coherent.

Proof. Note that both .# and ¢ are of finite type; in particular, each x there exists a U such that:
w05 = Flu
is surjective. Since ¢ is coherent, the kernel of the composition
fom: 0} =9
is of finite type. We claim that the image of:
mou:ker(form) — O — Fly
is ker f. In particular, we claim that:
ker(fly om) = Flv = Y|v

is exact at Z|y. It suffices to prove this on stalks; clearly the composition is zero so that im 7, ot, C ker f.
Suppose that s, € ker f;, then by surjectivity there exists a ¢, € O, such that 7, (tz) = Sz, 80 85 € IMT,.
In particular, ¢, € ker f, o 7, by definition, hence s, € im 7, ot,. We thus have a surjection:

ker(f|y om) — ker fly

and since ker(f|y o 7) is of finite type, we have that for all z € U there is some open neighborhood V' of
z and a surjection:

Oy — ker(f om)|y — ker fly

so ker f is of finite type. Now ker f is a finite type sub Ox module of .%; let {s1,...,s,} € ker f(U),
then the induced morphism:

@: O — ker fly

must have kernel of finite type because ker f|y injects into & |y. It follows that ker f is a coherent &'x
module.
Now consider coker f; since ¢ surjects onto coker f we have that coker f must be of finite type. Let
{51,--.,8n} C (coker f)(U), and:
¢ : O — coker f|y

the induced morphism. Let z € U, and consider $j 4,...,8ps € coker fy; since coker f, = ¥, /im f,,
we have lifts t; 4,...,tp o € %. By taking 2n intersections we obtain an open neighborhood of z, V,
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with sections si,...,s), € coker f(V) and lifts ¢1,...,t, € 4(V) such that 7(s;) = ¢;. By restricting to a
smaller open set if necessary, we may assume that there is a surjection & : O3 — im f|y,. We have that
t1,...,tn, and & determine a surjection:

B:OL®OT — G|y

We thus can construct the following commutative diagram:

0 Y J— oy 0
| | |
3 B ¢|loanishes
| l |

0 —— im f|v B Gy ™ coker fly —— 0

The snake lemma, which applies in any abelian category, implies and exact sequence of the form:

0 —— ker{ —— ker§ —— ker ¢|y —— coker{ —— - -

However, £ is a surjection, hence we have that ker 8 surjects onto ker ¢|y as coker{ = 0 by Proposi-
tion 1.2.8. Tt follows that since ker 3 is of finite type as ¢ is coherent, that ker ¢|y, must be of finite type
as well, implying the claim. O

We have the following corollary:

Corollary 5.1.3. Let f : F — 9 be a morphism between sheaves of Ox modules, where % is of finite
type, and &4 is coherent. Then ker f is of finite type.

Proof. This follows by noticing that the part of the proof in Lemma 5.1.8 showing that ker f was of finite
type, depended only on .# be of finite type. ]

The task of showing that Cohy, has direct sums is surprisingly delicate as far as we can tell. In fact,
it seems that the best path towards a proof of this is via the following lemma:

Lemma 5.1.9. Let:
00— F — Y9 —9g—H —— 0

be a short exact sequence of Ox modules. If any two of the three are coherent, then so is the third.

Proof. Note that if 4 and S are coherent, then .%# is the kernel of f and thus coherent by Lemma 5.1.8.
If % and ¢ are coherent, then J# is the cokernel of the morphism % — ¢, and thus coherent by
Lemma 5.1.8.

Now suppose that % and J# are coherent. We first show that ¢ is finite type; since .% and %
are finite type, we can find a common open set U such that O]} and O} surject onto F|y and |y
respectively. Taking U to be small enough, the same argument in Lemma 5.1.8 demonstrates that we can
take lifts of the sections which define the map &7F. It follows that we obtain a morphism O & 0} — F |y
which manifestly makes the following diagrams commute:

0 oy op o oy o 0

O%yh] g|U %|U 0

It suffices to check surjectivity of the middle morphisms on stalks, however this then follows from the
surjectivity part of the five lemma, implying that ¢ is of finite type.

Now let {s1,...,8,} C 4(U) define the morphism:

¢ﬁg—)g|U
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Then ker g|y o ¢ is of finite type as |y is coherent. We thus have the following diagram:

0 0 Zs Id 7z 0
| |
@ gluog
| |

0 — Flv — flv— Y|y —glvop— H —— 0

and so the snake lemma once again implies an exact sequence of the form:

0 ker ¢ ker g|y 0 ¢ —— cokerQ) —— - --

However, coker 0 = %, hence ker ¢ is the kernel of the morphism ker g|y o ¢ — ZF|y. The claim now
follows from Corollary 5.1.3 O

We now prove the main result of the section:

Theorem 5.1.1. Let (X, Ox) be a ringed space, then Cohg,, is an abelian category.

Proof. First note that Cohg, is additive; indeed Lemma 5.1.9 implies that if # and ¢ are coherent, then
F @9 are coherent, because we have the following exact sequence:

00— F —— F0Y — 94 ——0

Moreover, Lemma 5.1.8 implies that kernels and cokernels of coherent modules are coherent.

We need to show that monomorphisms are kernels, and epimorphisms are cokernels. However, The-
orem 1.2.1, shows that if f : # — ¢ is a monomorphism between coherent &y modules, then (&, f) is
the kernel of:

9 — coker f

Since ¢ is coherent, and coker f is coherent by Lemma 5.1.8, we have that f is the kernel of a morphism
between coherent €y modules, as desired. Similarly, if f : .# — ¢ is an epimorphism, then (¢, f) is the
cokernel of ¢ : ker f — %, which is a morphism of coherent &'x module by Lemma 5.1.8. Tt follows that
epimorphisms are cokernels, and so Cohg, is an abelian category. O

We end this section with the following result:
Proposition 5.1.5. Let f: X =Y be a morphism of locally ringed spaces. The following hold:
i) Cohg, is closed under tensor products.

1) If Ox and Oy are coherent modules, then f* is a functor Cohg, — Cohg, .

Proof. Note that clearly finitely presented &x modules are closed under tensor products by part i) of
Proposition 5.1.4. Let % be of finite presentation, and ¢ be coherent, then by right exactness of the
tensor product, for some U we have:

Of Qey g|U R — ﬁgl Koy g|U R — 9‘[} (g7 g|U — 0
By parts a) and ¢) of Proposition 5.1.1, this can be rewritten as:
gn'U —_— gm|U —_— 9‘U Koy g|U — 0

By Theorem 5.1.1, Cohg, forms an abelian category, hence the first two terms are coherent &'x modules.
It follows that .#|y ®g, ¥|u is a cokernel of a morphism between coherent sheaves and is thus coherent.
Since all such U cover X, we have that .# ®¢, ¢ is coherent.

By Lemma 5.1.6, since Oy is coherent, we have that .# being a coherent €y module is equivalent to
F being of finite presentation. It follows by part iv) of Proposition 5.1.4 that f*.% is locally of finite
presentation as well. Since Ox is coherent, the same lemma proves that f*.# is coherent, implying the
claim. .
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5.2 Tensor-Hom Adjunction for &y Modules

In this section we continue to assume that (X, Ox) is an arbitrary ringed space, and develop the an
analogue of the tensor hom adjunction in the category of &'x modules. This will allow us to easily prove
that f* is the left adjoint of the direct image functor. We begin with a review of the statement and proof
in the category of A-modules.

Theorem 5.2.1. Let M and N be A modules, and P and N be B modules. There is a natural isomor-
phism of abelian groups:

Homp(M ®4 N, P) =2 Hom4(M,Homp(N, P))

Before proving this statement recall that the B module structure on M ® 4 N is given by:
b-(m®n)=m® (bn)
and that the A module structure on Homp (N, P) is given by:
(a-¢): N— P
nr— ¢(a-n)
We now begin the proof:

Proof. We first construct a map:
U : Homp(M ®4 N, P) — Homyu (M, Hompg(N, P))

Let f € Homp(M ®4 N,P), and let ® : M @& N — M ®4 N be the tensor map. Let f = f o ®, then

we claim that f B linear in the second component. It is clear that the additivity condition holds; let
m € M, n € N, and b € B, then we have the following;:

f(m,bn) = f(m@bn) = f(b- (m®@n)) =b- f(m&n)
as desired. For each m, we thus get a map m. f defined by:
(mof)(n) = f(m,n)

which is B-linear. We want to see that the assignment m — mJ f is A linear; let mq,mo € M and
ai,as € A, then for all n in N:

(a1 + agma)f(n) =f(aimi + agmg,n)

flaimi @ n+ agms @ n)
flaymi @ n) + flasms @ n)
=f(m1 ® ain) + f(m2 ® azn)
=myaf(ain) + moaf(agn)

=ay - (myaf)(n) + as - (masf)(n)

It follows that we have obtained a map:
U : Homp(M ®4 N, P) — Homyu (M, Hompg(N, P))
f— (m— mof)

This is clearly a morphism of abelian groups, and is functorial/natural in N, and so the morphism is
natural.

Suppose that ¥(f) = 0, then for all m we have that mof = 0. In particular, for all simple tensors
m ® n, we would have that:

Jm@n) = (mf)(n) = 0

Since f is a group homomorphism, it follows that f is identically zero on M ® 4 N and is thus the zero
morphism. This shows that ¥ is injective.
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Now let ¢ € Hom4(M,Homp(N, P)); then we obtain a map:
g:M&N — P
(m, n) — (¢(m))(n)
Note that g satisfies the following:

glam,n) = (¢(am))(n) = (a - ¢(m))(n) = ¢(m)(an) = g(m,na)

and is additive in both entries. By the construction of the tensor product®', these are the minimal
requirements to get a well defined group homomorphism:

f M®syN—P

which satisfies f o ® = ¢, and is obviously B-linear. Clearly, the assignment m — m_f is then equal to
the map ¢. It follows that ¥ is an isomorphism implying the claim. O

The first stumbling block in extending the above result to the category &'x modules, is that Homg, (.%,¥9)
is not a sheaf, so an expression of the form:

HOmﬁX (g\, Hom@;( (g, %))

makes no sense. We fix this with the following definition:

Definition 5.2.1. Let .# and ¢ be sheaves of 0'x modules, then the Hom sheaf®”, denoted Hom, (#,9),
is the sheaf defined on opens by:**

Homg, (7,9)(U) = Homg, (F|v,¥|v)
Note that since &y modules form an abelian category, we have that this is a priori a presheaf of abelian
groups.
Lemma 5.2.1. Let .# and 9 be Ox modules, then Homp (F,9) is a sheaf of Ox modules.

Proof. We first show that Hom, (.#,%) is a sheaf; the restriction maps are the obvious ones sending
a natural transformation to the restricted natural transformation. These obviously satisfy the presheaf
conditions. Let F' € Homg, (Z|y,¥4|v), and {U;} be a cover for U such that F|y, is the zero morphism.
In particular, this implies that that the stalk map F, is zero for all z € U, hence F is the zero morphism.

Now suppose that F; € Homg, (F|u,,¥|v,) so that Filu,nu, = F}
implies that the F; glue®™ together to yield a unique morphism .|y — ¢|y which restricts to F; on U;.
It follows that Hom, (#,9) is a sheaf.

We define a sheaf morphism

U;nu;, then Proposition 1.2.11

Ox x Homg (F,9) — Homg (F,9)

as follows: let U C X be arbitrary, then (s,F) € Ox(U) x Homg, (F|y,¥|v) is sent to the sheaf
morphism s - F', defined on opens V C U by:

(s-F)y : F(V) —¥4(V)
t— slv - Fy(t)

This clearly commutes with restrictions and so defines an element in Homg,, (% |y, ¥|v). The assignment
(s, F) — s F also clearly commutes with restrictions O

If .7 is an Ox module, then we denote by .#* the dual sheaf Hom, (%, 0x). One may hope that
taking stalks commutes with the Hom, i.e. that some thing of the form:

Mﬁx (97 g)ﬂ? g Homﬁx,m (‘gz&m gﬁ)

however this is rarely the case:

81Gee for example, Atiyah Macdonald Chapter 2, Proposition 2.12.

82In any abelian category, a functor of this form is called an internal hom functor, as it is an analogue of the true Hom
functor, but has value in the abelian category, rather than the category of abelian groups.

83This can obviously defined similarly for general sheaves, or sheaves of abelian groups, etc.

84The morphisms gluing the Z |y, together are just the identity morphisms, and similarly for the ¢/, .
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Example 5.2.1. Let X be irreducible, and &x be the constant sheaf with values in Z on X. Note since
no finite intersection of open sets can be empty, this is the honest to god constant presheaf; clearly every
sheaf of abelian groups on Ox is now canonically an 0x module. Let .%# be the sky scraper sheaf of Z at
x, see Lemma 1.2.7. Supposing z is a closed point, then we claim that:

HOIII@U (fg.lU7 ﬁU) =0

for al U € X. If « ¢ U then Z|y = 0 hence the claim; if © € U, then .#|y is nonzero, however if
F € Homg, (Z|u, Oy) =0, and s € Z|y(V), we claim that:

Fv(S) =0

for all V C U, and s € .Z(V). Indeed, the restriction maps 6}, : Oy (V) — Oy (W) are the identity, so
let W =V ~ {z}, then s|yy = 0, hence we have that:

0= Flw(slw) = 0y o Fy(s)

so by injectivity, we have that Fy (s) = 0. It follows that F' is identically zero on all V' C U, hence F is
the zero morphism. We have thus shown that:

Homg (F,0x), =02 Z = Homy(Z,Z) = Home,  (Fz, %)

We will eventually show that the remedy for this is when .# is finitely presented, which will imply
that:

[THome, = Homg, (F,9)

Jus as in the category of A-modules, we have that Hom, (#,—) and Homg (—,.#) are functors.
Indeed, we know where each should send objects, so let F': ¢ — 7, then we have a morphism:

F*:Homg (,%) — Homg (9,7)
given on opens by:

Ff} : HOHlﬁU (%‘U,yhj) — HOHI@U (g|U7§|U)
G—Go F|U

which obviously commute with restriction maps. One easily checks that that (F o G)* = G* o F*, and
so Homg, (—,.%) is a contravariant functor. Similarly, we have Hom,, (#,—) is a covariant functor,
sending F' to:

F,:Homg (F,9) — Homg (F, )
given on opens by:

(F*)U : HOHIﬁU (2|U;g|U) — HOHI@U (§|U7%‘U)
Gr— F‘U oG

Our goal is to show that these functors are exact, just as in the case of A modules.

Proposition 5.2.1. Let .7 an Ox module, then the functors Hom, (F,—) and Home, (=, F) are left
exact.””

Proof. Let:

0—— 94 f1— 9

fo—— Y3

be an exact sequence of &x modules. We first show that:

0 —— Homg (F,%)

fie — Homp, (F, %)

fax —> Homep, (F,93)

85 A contravariant functor is left (right) exact if it takes right (left) exact sequences to left (right) exact sequences.
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is exact. It suffices to show that this exact on every open set,”® i.e. that the following sequence of abelian
groups is exact for every U:

0—— Homﬁu(fhj,glh]) — (f1x)u — HomﬁU(f\U,gﬂU) — (fax)u — Homﬁu(fhj,gg\(])

Suppose that F' € Homg, (F v, % |v) satisfies:

(fi)u(F) = filvo F=0

In particular since ker fi|y = 0, we must have that ker F' = %y, so F is the zero morphism, implying
(f1+)u is injective. Now clearly if F' € im(f1.)y then (f2.)y(F) = 0; suppose that F' € ker(fox)v, then
we have that:

felvo F =0

then we want to show that F' = fi|y o G for some G € Homg, (F|v,%|v). Note that since ker f1|y = 0,
we have that ¢ |y is canonically im fi|y = ker fo|y, i.e. (4|u, fi|lu) satisfies the universal property of
the kernel. By the aforementioned, we have that there exists a unique map G such that the following

diagram commutes:
) 4\;
Flu F Goly — folu Gsluy
~ ~

Elfel filu
~ -

“lu

implying the claim.

Now let:
4

be an exact sequence of &y modules. By the same argument to show that:

fL— 9

fo—— Y3 —— 0

0 —— Homg, (93,F)

f;— Homg (%2, F) — i — Homg (¢, F)
is exact, it suffices to show that we have an exact sequence of abelian groups:
0 —— Homg, (%|v, #|lu) — (f5)v — Homg, (%|v, F|lu) — (#1)v — Homeg, (%1, |v, F|vu)

Let F € Homg, (%|u,-Z|u) be such that F o foly = 0. It follows that ker F' = %|y as im fa|y = %3, so
F' is the zero map, hence F' = 0, and (f3)y is injective.

Now let F' € Homg, (%|u,-Z|v), clearly if F = G o fa]y then we have that (f;)y(F) = 0. Now
suppose that I’ satisfies:

Fofilu=0

Note that since fo is surjective, we have that (4s|y, f2|v) is canonically coker f1, hence by the universal
property of the cokernel, there exists a unique G such that the following diagram commutes:

g1|U filv — g2|U F 9‘U

~ A
falu G
N e
Y|

Therefore F' = G o fa]y for a unique G € Homg, (45, . #y), hence we have proven exactness of the
sequence. O

Using exactness, we will be able to show that the desired property holds on stalks in nice enough
situations. First of all note that we have maps:

Homg, (Z|v,%y) — Homey  (Fo,Ye)
Fr—F,

86 Note that exact sequences of sheaves don’t need to be exact on open sets, but if they are exact on open sets then they
are exact.
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which obviously commute with restrictions, hence there is a unique morphism ¥, making the following
diagram commute:

Homg, (F|v,9|v) Homg, (Z|v,¥9|v)

Mﬁx (yu g)aj

Uy

l

HOm@?X,T/ (gzx, gx)

We need the following lemma, which is an analogue of the result that Hom 4 (A, M) = M.
Lemma 5.2.2. Let F be an Ox module, then:

Il

Hom, (0%, %)= 7"
as Ox modules.
Proof. This is essentially obvious, and it suffices to prove that there is a natural®’ isomorphism:
Homg, (63, Z|u) = F(U)"
for all U. First note by the universal property of the coproduct, we have that naturally:
Homg, (O, 7 |v) = Homg, (Oy, F|u)"
hence it suffices to show that:
Homg, (Oy, Flv) = Z(U)
Now define a morphism:

[OTa HomﬁU(ﬁU,ﬁhj) — y(U)
F—s Fy(1)

where 1 € 0y (U) is the ‘global” unit section. This is injective as if Fyy(1) = 0, then for all V' C U and
s € Oy (V) we have, :

Fy(s)=s5-Fy(1)=s-Fy(0Y(1) =s-Fy(1) =0

implying that F' is the zero morphism. This is surjective because if a € F(U) then the map defined for
all vV C U:

Fy . ﬁU(V) — ﬁ(V)
s> s-aly

defines a morphism of &x modules. In particular Fy; (1) = a, hence @y is an isomorphism for all U, and
clearly commutes with restrictions, implying the claim. O

We now have the following;:

Proposition 5.2.2. Let F be a sheaf of Ox modules, and © € X. If F is of finite type, then for all Ox
modules 4, U, is injective. If F is in addition finitely presented, then for all Y Y, is an isomorphism.

Proof. Let [U, F] € Homg, (F,9), and suppose that W, ([U, F]) = F, = 0. By shrinking U if we need
to, there exist sections s1,..., s, of #(U) such that we have a surjection:

ﬁ{}‘)ﬁ|U

87].e. will commute with restriction maps.
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In particular, the s;, generate %, as an Ox, module for all y € U. Since F, = 0, we have that
F,(s;z) =0foralli=1,...,n. By taking n intersections, we can find an open neighborhood V' of = such
that Fy (s;|v) = 0 for all . In particular, we have that for all y € V' the F,, = 0 is the zero morphism, so
Fly =0 as well. It follows that [U, F] = [V, F|v] =0, so ¥, is injective.

Now suppose that % is finitely presented. For every x € U, we have an exact sequence:
op —— O} —— Fly — 0
Since taking stalks is exact, we have that:
O, — Oy —— Fp —— 0
is exact. Now taking Homg, ,(—,%,) we obtain an exact sequence:
0 —— Homgy (F2, %) —— 9" —— 9
Now applying Hom,, (—,%) to the initial exact sequence yields:
0 —— Homy (#,9) —— 9™ —— 4"
by Lemma 5.2.2. Taking stalks we get the following exact sequence:
0 —— Homg (F,9)s —— 9" —— G

The map 4" — 9" is, up to isomorphism, the same in both instances; it follows that Hom, (F,9),
and Homgy , (%, %,) are both the kernel of the same map and thus isomorphic.

Now that we have successfully found conditions in which the stalks of Hom,  behave as desired we
are ready to move on to the main and final goal of this chapter: proving a tensor hom adjunction for
sheaves.

Theorem 5.2.2. Let Ox and 0% be sheaves of commutative rings on X. Let F,9 € Modg, , and
9,5 € Modg, . Then there is a naturals isomorphism of sheaves of abelian groups:

Homg (F ®oy 9, )= Homg, (ﬁ,Homﬁ;( (9,50))

Before we begin with the proof of the above statement, we briefly describe how .# ®4, 4 is an 0%
module, and how Homg/ (¢,7) is an Ox module. On the level of presheaves, we have a canonical
morphism:

ﬁ%x(ﬁ@%xg)—)9®%xg
given on opens by:
Ox(U) x (F(U) ®oxw) 9(U)) — F(U) ®oxw) 4 (U)
(s,fog)— fo(s-9g)

This obviously makes .%# ®%X ¢ a presheaf of 0% modules, so by sheafifying and taking the induced
morphism, .# Qg ¢ an 0% module. To show that Homﬁs( (¢,90) is an Ox module, for each s € Ox (U),

we first define the morphism of & modules ¢ : 4|y — ¢|y given on opens by:
GNu(V) —Y|u(V)

fr—slv-f

We thus define a morphism:
Ox x Homg (4, 7) — Homg (4,7)
on open sets by:
ﬁx(U) X Homﬁb (g|U7%‘U) — Homgb(g|U7%|U)
(s, F) — F o s

One easily checks that this assignment makes Homg, (4|v, 7 |v) an Ox (U) module, and that these maps
commute with restrictions, giving H om g (Z,9) the structure of an % module. We now proceed with
the proof, it will be very similar to Theorem 5.1.1:
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Proof. We first wish to define a morphism:
U Homp (F @0y G H) — Homﬁx(ﬁ,Homﬁ%(g,%ﬂ))

On open sets, this should be a morphism of abelian groups:
Yy : Homgy (F|v ®6, G0v, Hlu) — Homﬁu(ﬁw,wﬁ% (&, 70)|u)
Given a morphism of &% modules f : #|y ®¢, ¥|v — H|u, we obtain the following morphism of abelian
groups:
fifo®: Flua¥Yly — Hlu
Using the above, we need to define a morphism .# |y — Homg, (9, 7)|u. Let s € #F(V), then we define
a morphism sLf|y : 4|y — €|y on opens by:
t— f(slw,t)

which is automatically a morphism of &7, modules. The assignment 7 (V) — Homg; (9|v, #|v)
is also clearly a morphism of Oy(V) modules, and so defines a morphism of Ox modules Fy —
Homg, (¥, )|y which we denote by (—).f. Hence Uy is given on opens by:

Homﬁfj (y|U ®lﬁU g'Ua%‘U) — Homﬁ{j(gh]amﬁ}( (g7%)|U)
fr=(=)of

Suppose that (—=)Jf = 0, then for all V C U and s € .%# (V') we have that s_f]y : Y|y — Ay is the zero
morphism. On global sections, this means that for all s € . (V) and allt € 9(V), f(s,t) = fo®(s,t) = 0.
However this implies that the stalk map:

fw:yw(@ﬁx,mgw_}%
is zero on simple tensors, hence f, is zero. It follows that f is identically zero and Wy is injective.

Now let g € Homg, (Z |y, Homﬁg( (¢, )|v); we define a morphism:
Flv oYy — Hlu

on open sets by:
FV)e9 (V) — (V)
(s,8) — (gv(s))v (?)

Note that gy : (V) — Homg, (9]v, |v), so (gv(s))v : 4(V) — H(V). As in Theorem 5.1.1, this
morphism satisfies the minimal properties to factor through the tensor product over &x, namely being
additive in both entries, and respecting the 0'x module structure on .% and ¢. It follows that we get an
induced morphism:

[+ Zlu®e, 9v — Hu
After unraveling our definition of ¥, one easily checks that Uy (f) is equal to g, so ¥y is surjective,

implying the claim. O

Notice now that by the above, Lemma 5.2.2, and Theorem 1.3.1 we easily have that:
Homg, (f*F,9) =Homg, (f~'F @10, Ox,9)
=Hom;- 4, ([, Homg, (Ox,9))
~Homs 4, (' F7,9)
~Hom,, (#,1.9)
taking global sections we obtain:

Theorem 5.2.3. Let .F be an Oy module, 4 an Ox module, and f : X — Y a morphism of ringed
spaces. There is then a natural isomorphism:

Homﬁx (f*yvg) = Homﬁy (ﬁ7 f*g)
In other words f* is the left adjoint of fi.



5.3. SOME COMMUTATIVE ALGEBRA: LOCALIZATION OF MODULES 241

5.3 Some Commutative Algebra: Localization of Modules

In Section 1.1 we laid the ground work in commutative algebra, namely the localization of a ring, to con-
struct the structure sheaf of an affine scheme in Section 1.4. In this section, we do something remarkably
similar for modules over a fixed ring A, so that in the next section we can easily construction modules
over affine schemes. In particular, our goal is to develop a theory of localization for modules, and explore
their properties. Most of this section comes from Atiyah-Macdonald.

Lemma 5.3.1. Let S C A be a multiplicatively closed subset. There exists an exact covariant functor
Mod s — Modg-1 4 which we call the localization of a module.

Proof. We impose an equivalence relation on the set M x S as follows: (mq,s1) ~ (ma, s2) if and only if
there exists a t € S such that:

t(ngl — Slmg) =0

Essentially the same proof as in Proposition 1.1.2 shows that M x S/ ~, which we denote by S~*M going
forward, has the structure of an S~1A module. In particular, if a/s € S™1A, then we define:

[a, s] - [m, t] = [am, st] and [m1, t1] + [ma, ta] = [tamy + t1ma, t1ts)

which are easily checked to be well defined. We also denote the equivalence classes [m,t] by m/t, and
thus multiplication and addition are given by:

w |

m am mi mso tomq + t1mo
t

= — and — =
st th to t1t2

Now let ¢ : M — N be an A module morphism; we want to define an S~'A morphism ¢’ : S™'M —
S~!N. Since any such morphism must satisfy:

() =4 1om
o (7)=0(i1)
1 ,/m
- ()
there is essentially one way to define this morphism, and that is as:

o(z)-

We check that this well defined: suppose that my/t; = ma/ts, then there is an s satisfying:
s(tyma —tamy) =0
Since ¢ is a morphism of A modules, it follows easily that:
s(tip(mz) — tad(m1)) =0

implying that:

hence ¢ is well defined. Let ¢ : N — P be another morphism of modules, and m/t € S™'M, then:

p(m 77/}(‘15("1))7 / gf)(m) o (g (T
(¢o¢)(t>f v T *d’(‘b(t))
hence (1 o )’ = 1’ o ¢’. Since we clearly have that Id’ is the identity morphism S~*M — S~1M it
follows that the assignment M +— S~™'M and ¢ — ¢’ defines a covariant functor Mod 4 — Modg-1 4.

It remains to show that this functor is exact. Let:

M1 —fi— M2 — fa = M2
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be an exact sequence of A-modules, we claim that:
S_1M1 —fi= S_le —fi= S_1M2

is exact. It is clear that f o f{ = 0, so we need only show that ker f5 C im f]. Let my/ts € ker f5, then:

p (m) _ Plma)

to to

then there exists an s € S such that:
S - f2 (mg) = 0

In particular, we have that fo(s-ms) = 0, so there is a unique element m; € M such that f1(m1) = s-mao.
It follows that:

1l ] = p— —

Stg

StQ S - tg tg

/ <m1) fl(ml) CRNUY) ma

hence the sequence is exact. O

We call this functor localization, and as in the ring case if we S is the multiplicatively closed subset
generated by f € A, and if S = A\ p for p € Spec A we denote S~'M by M, and M, respectively.
Moreover, note that we have a well defined localization map 7 : M — S~!M, sending m to m/1.

Lemma 5.3.2. The kernel of the map m: M — S~ M is precisely:
{meM:3s€ S s-m=0}
In particular, if A is an integral domain, and M is torsion free, then kerm = 0.

Proof. If m/1 = 0 then by definition there exists an s € S such that s-m = 0. If A is an integral domain,
and M has zero torsion, then for all a € A and all m € M we have that a - m = 0 implies either m or a
is equal to zero implying the claim. O

We now show that localization behaves well with submodules, and quotients:

Lemma 5.3.3. Let M be an A modules, N1 and No submodules of M, and S C A a multiplicatively
closed set. Then the following hold:

i) If m: M — S™YM is the localization map then SNy = (w(N)) C S71M.
LNy N Ny) = S7H(Ny) N S—H(Ny)

YNy + Ny)=S"INy + S7IN,

There is a natural isomorphism S™Y(M/Ny) = S~M /St Nj.

i) S
iii) S
)

(2%

Proof. For i), note that S™1N; is easily identified as a submodule of S™*M as the inclusion morphism
t: Ny — M gets sent to a morphism ¢/ : ST1N; — S~1M satisfying:

(2 -z esu

so it is also an inclusion. now if n/s € ST N we have that

n/s=(1/s)-(n/s) € (x(N))

If m/s € {(w(N)), then for some a/s € S~'A we have m/s = (a/s) - (n/1), however a-n € Ny as Ny is an
A submodule/ It follows that an/s € S~'Ny implying ).

For i4) if n/s € S™1(Ny N Ny), then by i) we can take n/1 to be such that n € Ny N No. In particular,
n/s € SNy and n/s € STIN; hence n/s € STLN;NS™LNy. Conversely, if n/s € SNy NS~ Ny, then
n/s € STLN; for each i. It follows that we can take n to be such that n € NyN Ny son/s € S~H(N3NNy)
by i), implying 7).
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For iii), let n/s € S™Y(Ny + N), then n € Ny + Ny hence n = ny + ny for n; € N;. It follows that
n/s =ny/s+na/s € STINy + STINy, giving us the first inclusion. If n/s € S™IN; + S~1 Ny then we
can write n/s as n1/s1 + na/ss where n; € N;. Now:

ny N2 Soni + S1Ng _
—+ 2 =202 e 5TV + Vy)
S1 52 5152

because sani + sinieN1 N Na.

Finally, for iv), we have an exact sequence:

0 N M M/N, —— 0

so the functor S—! gives us an exact sequence:
0 — SNy —— S7'M —— S™Y(M/N;) —— 0
implying that S~*(M/Ny) = S~'M/S7'N; as desired. O

Alternatively to the construction in Lemma 5.3.1, we can view S™'M as a tensor product. Indeed,
localization makes S™'A an A modules, so we could define S™'M as M ®4 S~ A, one just has to check
that this is an equivalent definition.

Proposition 5.3.1. There is a natural isomorphism of S~'A modules:
M@y S 'Ax2S'M
Proof. Note that that we have an A bilinear morphism:

MxSA—S'M
(m,a/s) — (m-a)/s

which then descends to an A linear morphism:
G M@, S TA— STIM

This easily seen to be S™!'A linear, where M ® 4 S~ A has the obvious structure of an S~'A modules.
Moreover, it is clearly surjective, as if m/s € ST M, then we have that ¢(m @ 1/s) = m/s. Let:

a—Zmz (a;/s;) € ker ¢

Then note that:

a—EamZ

l

Ift; =81---8; - 8n, then 1/s; = t;/s, so:

a—Za m; @ (t;/s) = (Za t; ml> ® (1/s)

Let:

n
n= Z a-t; -m;
i=1
then we have that:
n/s=0
implying there is some u € S such that u - n = 0. However, we can then write:
U 1
a=n® — =(un)® - =0
su s

so ¢ is injective as well. O
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Note that the above along with Lemma 5.1.1 implies that S™'A4 is a flat®® A module. We also have
the following obvious corollary:

Corollary 5.3.1. Let My and My be A modules, then:
STHM, @4 M) 2 ST My ®g-14 S~ My
Proof. By Proposition 5.3.1, we have that:

Sil(Ml ®a M) Z(M; @4 My) @4 S~1A
=My @4 (My®4 571 A)
M @4 (STTA®g14 ST Ms)
(M @4 S A) ®@g-14 ST Mo
=S My ®g-14 S M,

O

We end our short foray into commutative algebra by proving some ‘local to global’ properties of A
modules:

Proposition 5.3.2. Let M be an A module, then the following are equivalent:
1) M s the zero module.
it) M, is the zero module for all p € Spec A.
1i1) My, is the zero module for all m € | Spec A|

Proof. Clearly i) = i), and i4) = #ii), so it suffices to show #ii) = ¢). Suppose that My, is the zero
module for all m, and let m € M. Let I C A be the ideal defined by:

I={acA:a-m=0}

If I = A then m = 0, otherwise I C m for some m € | Spec A|. In this case, we have that m/1 =0 € Ay,
hence there is some s ¢ m satisfying s - m = 0. This implies that s € I, but I C m, so I ¢ m and thus
I = A, m = 0. Since this holds for arbitrary m we have that M is the zero module. O

This then implies the following;:
Corollary 5.3.2. Let:
My —fi~» My — f2— Ms
be a sequence of A modules, then the following are equivalent:
1) The sequence of A modules is exact.
1) For all p € Spec A the localized sequence is exact.
iii) For all m € | Spec A| the localized sequence is exact.

In particular, a morphism of A modules is injective or surjective if and only if the localized morphism is
injective or surjective for all m € | Spec A|.

Proof. We clearly have i) = ii) = ii) since localization is an exact functor. Now suppose that that:

Mlm

fim —> MQm — fom —> M3m

is exact for all m. Since foy 0 fim = 0 for all m, and fom © fim = (f2© f1)m, we have that im(fo0 f1)m =0
for all m, hence im fo o f; = 0 by Proposition 5.3.2. It follows that im f; C ker fs. In particular, we have
that there is a well defined quotient ker fo/im f1, and by Lemma 5.3.3 we have that

(ker fo/im f1)m = (ker fo)m/(im f1)m = ker fop,/im fim =0

so by Proposition 5.3.2 we that ker fo/im f; = 0 implying the claim. O

881 ¢. the functor ® 4 S~ 1 A is exact.
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A further consequence of the above is that flatness is a local property:
Proposition 5.3.3. Let M be an A module then the following are equivalent:
1) M is a flat A module.
1) For all p € Spec A My, is a flat A, module.
i13) For all m € | Spec A| My, is a flat Ay module.

Proof. Suppose that M is a flat module, and f : N — P an injective morphism of A, modules. We want
to show that the induced map

f/.N®ApMp—>P®ApMp

is also injective. Now m: A — S~ A gives every A, module an A module structure, such that f is also
an A module morphism. Now observe that we have the following isomorphisms:

N@ApMpgN(@AP (AP®AM)§N®AM

so up to isomorphism the morphism N ®a, My = P ®a, M, is the map N ® 4 M — P ® 4 M induced
by tensoring with M. It follows that since M is flat that f’ is flat hence M, is flat.

Clearly #i) = 4ii). Assuming ¢ii) let f : N — P an injective morphism, and f' : N®@ a4 M — P®4 M the
induced map. By Corollary 5.3.1, for all m € | Spec A|, up to isomorphism f, : (N®a M), = (P®aM)n
is the morphism:

Np ®a, Mp — Pp ®a, Mp

induced by fn : Ny — Py and tensoring with M,,. It follows that ker f] = (ker f'),, = 0. Since this
holds for all m, we have that ker f/ = 0 so M is flat. O

5.4 Quasicoherent Sheaves Over a Scheme

In this section we develop the theory of quasicoherent sheaves over a scheme. Since the scheme structure
on X is generally fixed, we use QCoh(X) to refer to the category of quasicoherent &'x modules, breaking
from our notation in the previous section. Our main goal in this section is to associate to each A module
a quasicoherent sheaf over Spec A, and show that every quasicoherent sheaf over X is locally of this
form. Using this, we will show that QCoh(X) is an abelian category, and explore a connection between
quasicoherent sheaves of ideals of Ox, and closed subschemes of X.

Lemma 5.4.1. Let M be an A module, then there is a quasicoherent sheaf M on Spec A satisfying
M(U,) = My. In particular M, = M,, and the assignment M +— M defines a covariant functor
Mod 4 — MOdSpecA-

Proof. We define a sheaf on a basis by F(U,) = M,. The restriction maps are those induced by identifying
Mg = M ®4 Ay and taking Id ® ng, where 67 : Ay — A," are the usual restriction maps. It is clear
that this defines a presheaf on a basis. Specifically, since U, C Uy, we have that there exists an k € Z*

and a € A such that a - h = g*, so these restriction maps are given by:

9Z2M9—>Mh

m m-a”
97 = hnk
The same exact argument as in Proposition 1.4.3, but with replacing elements in A, with elements in

M, demonstrates that this indeed defines a sheaf on a base. Due to the similarity of the argument, we
elect to not reproduce it here.

To see that ]\Ajp is uniquely isomorphic to My, it suffices to show that F, is isomorphic to M,,, however
this argument is virtually identical to the one in Proposition 1.4.4, replacing A,, and A, with M, and
M.

Finally, let f : M — N be a morphism of A modules, then on each distinguished open we get an
induced morphism M, — Ny, given by f ® Ida,. This map clearly commutes with restriction maps,

89We employ the same notation as in Proposition 1.4.3.
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hence by Theorem 1.4.1 we have a unique morphism of Ogpec 4 modules f: M — N. In particular,
the stalk map f, is given by the induced map M, — N, up to a unique isomorphism. Moreover, since

localization is a functor, we have that (fog) = f o g hence the assignment M — M defines a covariant
functor Mod4 — Modgpec 4 as desired. O

We have the following borderline immediate corollary:

Corollary 5.4.1. For all A modules M, the sheaf of Ospec 4 modules is quasicoherent. In particular, the
assignment M — M is a functor Mod 4 — QCoh(Spec A).

Proof. Let I be a possibly infinite indexing set such that:
fpA—M
iel

is a surjection. In particular, we could easily take I to have cardinality of M, take some bijection
h:I — S, and take f to be a direct sum of maps of the form:

fiZA—>M
1— h(i)

For the same reason, we easily obtain an indexing set J such that we have a surjection:

PA— kerf
JjeJ
We thus have an exact sequence:
®j6JA » Dier A > M > 0
Which induces a sequence of Ogpec 4 modules by Lemma 5.3.1:

J I o
ﬁSpec A ﬁSpec A M 0

On stalks this given by:
DjcsAp — Bicr 4 — My — 0

which is exact since localization is an exact functor by Lemma 5.2.1. It follows that the original sequence
of Ogpec 4 modules is exact, and the M is quasicoherent. O

Our first major goal is to prove that this functor is an equivalence of categories. We begin with the
following lemma:
Lemma 5.4.2. Let M be an A module, and F a sheaf of Ospeca modules. Any morphism M —

F(Spec A) of A modules induces a morphism of Ogpec 4 modules M — F. Moreover, every such mor-
phism of sheaves is induced by it’s action on global sections, M — % (Spec A).

Proof. Let ¢ : M — F(Spec A) be an A module morphism. We define a morphism on distinguished
opens by:

Yy, : Mg — F(Uy)
m

i —>gik-(¢<m>|ag>

Q

where we are using the fact that % (U,) is an A, module. If this morphism is well defined for each g,
then it clearly commutes with restrictions, so suppose that m/g¥ = n/g!, then there exists an L € Z*
such that:

g (g'm —g*n) =0



5.4. QUASICOHERENT SHEAVES OVER A SCHEME 247

Now note that:

1 1 1

— - (e(m)|v,) = = (B(n)]v,) = =7 - (lg'm — g1))

g g ght
Multiplying by 1 = g~ /g’ yields:

1

W ’ (¢(9L(glm - 95))) =0
implying that ty, is well defined as desired. It follows from Theorem 1.4.1 that there is an induced
morphism of gpec 4 modules 1 : M— F

Now let 9 : M — Z bea morphism of Ogpec 4 modules, and set ¢ = gpec 4. We need to show that:

¥, (;Z) =L sl

9k

Since ¢y, is a morphism of A, modules, we have that:

v (5) =

Qz-‘ = Q?r‘ = bw‘ =
QQ
Py
3
{S
S~—

implying the claim. O

With this we can show the following;:

Lemma 5.4.3. Suppose that F is an Ogpec 4 module such that there exists an exact sequence:
1 J N n N
ﬁSpecA ﬁSpecA F 0
Then there is an isomorphism M = ., where M = F (Spec A).

Proof. We first note that ﬁépec 4 18 the Ogpec 4 module induced by A!. Taking global sections, we get a
morphism:

da : AI — AJ
and set M = coker ¢ 4. Since on global sections, we have that the composition:
Al —— Al —— F(Spec A)

is equal to zero, there exists a unique morphism ¢ : M — Z#(Spec A) which by Lemma 5.4.2 induces
a unique morphism 1/) M — F. Since the morphism ¢4 is the one which induces the morphism
ﬁSpec a4 ﬁSpeC 4, we have that the following diagram commutes:

I
_— —_ 7
ﬁSpeC A ﬁSpec A /

Talking stalks we obtain the following commutative diagram:

Ag\ /ﬁ
M,

Now, M, and %, are both the cokernel of the morphism AI — AJ, so the morphism M, — %, is
the unique isomorphism which makes the above diagram commute. It follows that ¢ is an isomorphism
implying the claim. O

A
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The preceding lemma demonstrates that for a very specific class of quasicoherent Ogpec 4 modules,
we have the desired claim. We now show that this holds in generality:

Proposition 5.4.1. The functor Mod4 — QCoh(Spec A) given by sending M to M is essentially sur-
jective’”

Proof. Let % € QCoh(Spec A), then every point has a neighborhood U such that there exists an exact
sequence:

Ol —— 0} —— Fly —— 0

Without loss of generality, we can take U = Uy, for f; € A, and since Spec A is quasicompact, we can
take finitely many to cover Spec A. By Lemma 5.4.3, it follows that we have a cover {Uy, }7; of Spec A
such that:

L9$|Ufi = Mi

These isomorphisms induce isomorphisms ¢;; : J\Z|Ufi 5 ]\AJ/j\Ufi 5 which trivially satisfy the cocycle

condition. Denote by v;; the isomorphisms ]\Z(U fif) — M;(Uy, f;) induced by taking global sections of
¢;j. Up to isomorphism we can view the global sections on .# as:

F(Spec A) = {(mi) e [ M : ¢is(milu,,, ) = mylo,,, }

i=1
Note that for each 7 we naturally have:
Mi(Uy.3,) =Mi ®a,, Ay,
=M, ®Afi Afi ®A Afj
=M; @4 Ay,
g(]Wi)fj

so the restriction maps are localization maps, mi|Ufi 5 = M /1 € (M;)y,, and the v;; are isomorphisms
(M;)s, — (Mj)y,. With this we have that up to isomorphis:

n
F(Spec A) = {(mi) € [T M« ij(mi/1) = mj/1}
i=1
Moreover, we have that % (Spec A) is the kernel of the morphism:
@ M @
i,k=1
(m;) — (i (mi/1) — my/1)
Since localization is exact, and commutes with finite products, we have that if M = #(Spec A), then:

n

ij:ker @ —> @ f]fk

i=1 i,k=1

where if o, : (M;)y, 5, — (My)y, s, is the induced morphism, then the above map is given by:

. / Zfl? lll
(me~+@%<$ﬂ%>_£g”>

_ N T Y
My, = { (ma/ f°) H B <<fkf) ) - (fjfi)”}

90Recall this implies that any object .# € QCoh(Spec A) is isomorphic to M for some M.

It follows that:
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Let £ be the morphism M — F be the morphism induced by the identity map M — % (Spec A). The
map &y i is then given by:

Eu,, + My, — M,
(mi/ fF) — (1/£17) - m;

Suppose that (mi/ff'i) — 0, and let K = max{k;}. Note that (fK *im;/1) = 0 if and only if the original
element does, so it suffices to consider an element in ker foj of the form (m;/1).

Now let m; € M;, we need to define elements in (M;),, and do so by noting that there exist m; € M;
and k; € ZT such that:

Yji(m;/1) = - € (M),

fk:
We claim that the sequence (m;/ f]k € [[(M;)y, actually lies in My,. Since the ¢;; satisfy the cocycle
condition, we have that for all 4, j, [

/ !/ /
Yy = i o

o) =4 ()
=i (¥

Now consider:

/
=Wil

¥ji(m;/1) |Ufifjfl>

_wll ( ( Ufifjf{))
Unfm)

:%//jl (T) ’Ufif]‘fl
. mlfikl
C(fifi)e

hence (ml/fk) € My,. It is clear that (ml/fk') maps to m;, hence {y, is surjective, and thus an

isomorphism as desired. In particular, the sheaf morphism & \Uf is determlned by fo , and is thus an
isomorphism. Since £ is locally an isomorphism on an open cover, it follows that £ is an isomorphism,

and thus .# = M as desired. O
We can now prove our first main result of the section:

Theorem 5.4.1. The functor Moda — QCoh(Spec A) is an equivalence of categories. In particular

QCoh(Spec A) is an abelian category.

Proof. Tt suffices to show that the functor is fully faithful, as it essentially surjective by the preceding
proposition. Let M and N be A modules, then the morphism:

Homug(M,N) — HomspecA(M, K/')

f—f
is surjective by Lemma 5.4.2. Suppose that f +— 0, then by Lemma 5.4.1, we have that up to a unique
isomorphism fIJ fps hence fp =0 for all p € SpecA It follows that since (im f), = im f, = 0, we have
that f is the zero morphism by Proposition 5.3.2, implying the equivalence.

It is now obvious that QCoh(Spec A) is an abelian category, as for all f: M — N we have that
ker f = ker f f and coker f & coker | f- O

An immediate corollary is that QCoh(X) is an abelian category when X is a scheme.

Corollary 5.4.2. Let X be a scheme and # be a quasicoherent Ox module, then then for every open
U = SpecA C X there exists an A module such that F|y = M. Moreover QCoh(X) is an abelian
category.



Dimension and Divisors

6.1 Some Commutative Algebra: Krull Dimension

Let M be a smooth manifold, and recall that the dimension of M (if M is of pure dimension that is)
is defined to be the dimension of the Euclidean space it is locally homeomorphic to. That is, if U is an
open neighborhood of p € M and ¢ : U — V C R"™, is a coordinate chart, then the dimension of M is n.
In particular, we also have that the dimension as a vector space over R of the tangent space at a point
is equal to the dimension of M for al p € M.

We wish to develop a theory of dimension for schemes which mimics the above behavior in the
category of smooth manifolds; that is for ‘nice enough’ schemes ”* we want our notion of dimension to
be determined by the dimension of an open affine, as well as by the stalk at a closed point x € X. In
particular, we will also want single point schemes to have dimension zero, and our classical examples, P}
and A7, to have dimension n.

Since the category of affine schemes is anti-equivalent to the category of commutative rings, we will
first develop the dimension theory for commutative rings.

Definition 6.1.1. Let A be a commutative ring; a strictly increasing finite chain of prime ideals:

has length n”?. Let L(A) C N be the ordered set consisting of the lengths of all finite increasing chains
of prime ideals; we define the Krull dimension of a commutative ring A, denoted dim A, to be sup L(A)
if it exists, and to be infinite if there is no least upper bound”’’.

One might quickly jump to the conclusion that all rings of finite dimension are Noetherian, or, equiv-
alently, that any non-Noetherian ring will have infinite dimension. While the study of Krull dimension
of Noetherian rings will prove a fruitful endeavor, as the next example shows, the former is not the case.

Example 6.1.1. Let A = k[zg,x1,...,]/(x3,2},...), then we claim that A contains only one prime
ideal. Note that A is clearly not Noetherian. The prime ideals of A are in bijection with prime ideals
containing I = <x§, 2. > That is every prime ideal can be identified with a prime ideal of A lying in
the closed set V(I) C Spec A. We have that V(I) = V(v/I), and that each x; € VT as x7 € I. Tt follows
that (z¢,z1,...) C VI, so VI = (xg,z1,...,) and is thus maximal. Therefore, V(I) consists of a single
point, and thus A = k[zg, z1,...,]/ <x%, o A > has one prime ideal, so dim A = 0.

We would also like to show the existence of a Noetherian ring of infinite dimension. However, the
construction of such a ring was historically an elusive endeavor, and requires more machinery than we
have on hand. Therefore, such an example appears later on in the section’®, but we stress that there
Noetherian does not imply finite dimensional.

Example 6.1.2. We want to determine the dimension of Z. Every non zero prime ideal in Z is is
maximal, hence the only prime that can possible be contained in a non zero prime is the zero ideal. It
follows that every chain of increasing prime ideals is of one of two forms:

(0) or (0) C pZ

where p is prime. It follows that L(Z) = {0, 1} which has least upper bound 1 hence dimZ = 1.

91To be defined later.

92We are essentially counting number of inclusions, not the number of prime ideals.
93Note that since L(A) C N, if sup L(A) exists, then sup A € L(A).

94Gee Example 6.1.3.

250
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In particular, if A is a PID, then every non-zero prime ideal is maximal, so L(A) = {0,1} hence
dim A = 1. Note that for any field k[z] is a PID, hence dim k[z] = 1.

In order to determine the dimension of more complicated rings it will be convenient to determine
equivalent definitions of dimension.

Definition 6.1.2. Let p € Spec A, and let L(p) be the set consisting of the lengths of all strictly increasing
chains of prime ideals ending with p. We define the height of p, denoted ht(p), to be sup L(p) if it exists,
and infinite otherwise.

We have the following characterization of height zero prime ideals:

Lemma 6.1.1. Let p € Spec A, then ht(p) = 0 if and only if p is minimal’® over (0).

Proof. Let p be a minimal prime ideal over 0, then by definition, if g C p, we have that ¢ = p, hence the
only chain of prime ideals ending with p is the trivial chain p. It follows that ht(p) = 0.

Let ht(p) = 0, and suppose q C p. If this inclusion is strict, then we have that ht(p) > 1, hence we
must have that ¢ = p implying that p is minimal over (0). O
While we have used localization throughout this text, we have not yet had need to determine what
Spec S~!A is in terms of of prime ideals of A. We do so now:
Lemma 6.1.2. Let S be a multiplicatively closed set, then their exists a bijection between Spec S™'A and
prime ideals of A such that SN p = 0.
Proof. This is entirely analogous to Proposition 1.1.3. We define the maps, and leave the rest of the proof
as an exercise to the reader.

Let B denote the set of prime ideals of A such that S Np = @; we define a set map:
f:9P — SpecStA
pr— (m(p))

where 7 : A — ST!A is the localization map. For this map to be well defined, we need to check that this
is a prime ideal. Let a/s,b/t € S~*A such that ab/(ts) € f(p), it follows that:

ab _p
ts  w

for some u € S, and some p € p. There then exists an element v € S such that:
v(uab — pts) =0

It follows that abuv = ptsv € p, so ab € p, hence either a or b € p implying either a/s or b/t € f(p), so
f(p) is prime.
We define an inverse map by:

g:SpecS7tA —p
q— 7 '(q)

This is clearly prime, so we need to check that g(q) NS = ). Suppose other wise, then there is some s € S
such that s € 7=1(q). It follows that s/1 € m(7~1(q)) C q, implying that q = S™1A a contradiction.

O

Note that these maps are inclusion preserving, so if p C q € B3, then f(p) C f(q), and similarly for g.
With the above characterization we can show the following:

Proposition 6.1.1. Let p € Spec A, then ht(p) = dim A,.

Proof. We first show that ht(p) is infinite if and only if dim A, is infinite. Suppose that ht(p) is infinite,
then for any strictly increasing finite chain of prime ideals ending with p of length n:

PoCPLG - Chn=0p

95 As in Theorem 3.4.3
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we can find a sequence:
CIoQQlQ"'QCIm:p

such that m > n. Each of these ideals is contained in p, hence (A \ p) Nq; = 0, and similarly for each p;.
It follows that

fpo) C fp1) & -+ S fpn) = my

is a chain of prime ideals of length n in A,. Here f is the map from the preceding lemma, and m,, is the
unique maximal ideal in A,.

Suppose that dim A, is finite, then sup L(A,) exists, then there exists an n € L(A), such that that
for all m € L, we have that n > m. In particular, n corresponds to a chain of prime ideals:

Q& S A, =mp

where we must end with m, as otherwise there exists a chain of length n 4 1 due to the fact that m,
contains every ideal of A,. It follows that:

9(d0) -+ S g(a,) =p

is a chain of length n. However, since ht(p) is infinite, we can take m > n and find a chain:
oG &E - Gdm=p

Then:

f(d0) C fla1) - S fdm) = my

is a chain of prime ideals in A, of length m > n, hence there exists m € L(A) such that m > n a
contradiction. It follows that if ht(p) is infinite, then dim A, is infinite as well.

Now suppose that dim A, is infinite, then as before, given m € L(A,), we can always find ann € L(A,)
such that n > m. Suppose that ht(p) is finite, and let n = sup L(p). This corresponds to a chain of prime
ideals ending with p of length n:

P0G - CPn=p
It follows that:
fpo) C -+ & flpn) =my

is a chain of prime ideals of length n in A,. Since m, is the unique maximal ideal of A, and dim A, is
infinite, we have that there exists a chain of prime ideals of length m > n ending with m,:

90 & - & Gm =My
so:

9(q0) & - S glam) =p

is a chain of prime ideals in A terminating with p of length m. It follows that m € L(p), and is greater
than n hence we must have that no such n is complete.

Now suppose that dim A, is finite, then by the above we equivalently have that htp is finite as well.
Let dim A, = n and htp = m. Suppose that:

PoG - Ghm=p
is a strictly in increasing chain of prime ideals of length m terminating with p, then we have that:

flpo) G-+ & fpm) = my

is a strictly increasing chain of prime ideals of length m in A,. It follows that m < n. Now let:

do & & dn
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be a strictly increasing chain of prime ideals of length n in A,. We know that g, = m,, as otherwise
there exists a chain of length n + 1. It follows that:

9(q0) S-S g(an) =p

is a strictly increasing chain of prime ideals in A terminating with p of length n. It follows that n < m,
hence we must have that m = n implying the claim. O

Now let H(A) be the set defined by:
H(A) = {ht(p) : p € Spec A}

where if ht(p) is infinite, we replace it with the symbol co. Note that N U {oco} carries a total order by
declaring that oo > m for all m € N. It follows that H(A) C NU {oo} carries a natural ordering, and
that sup H(A) = oo if and only if there exists a prime ideal of infinite height, or sup H(A) contains only
prime ideals of finite height, but H(A) is unbounded as a subset of N. Our next result will characterize
the Krull dimension of a ring in terms of the heights of prime ideals.

Proposition 6.1.2. The Krull dimension of A is finite if and only if sup H(A) # oo. In particular if
sup H(A) # oo, or dim A is finite, then dim A = sup H(A).

Proof. For the first claim, we will instead show the contrapositive; i.e. that dim A is infinite if and only
if sup H(A) = oc.

Suppose that sup H(A) = oo, then there either exists a prime ideal p € Spec A such that ht(p) is
infinite, or every prime ideal of A has finite height, but H(A) is infinite. In the first case, it follows that
that for all n € L(A) we can find an increasing chain of prime ideals of length m > n which terminates
with p, so dim A cannot be finite. In the latter case, it follows that for any n € L(A) we can find a
q € Spec A such that ht(q) > n, but then ht(q) € L(A) so sup L(A) does not exist, and dim A cannot be
finite.

Now suppose dim A is infinite. For all n € H(A), we can find an increasing chain of prime ideals:

Go& & dm =4

where m > n. It follows that ht(q) is either infinite, in which case sup H(A) = oo and we are done, or
ht(q) is finite but greater than n. In the latter case, since n was arbitrary, we have that H(A). so by
definition sup H(A) = co.

To prove the second claim, suppose that either sup H(A) # oo, or dim A is finite. In both cases, by
the first statement we have that sup H(A) = m and dim A = n for m,n € N. Now if sup H(A) = m, we
have that that ht(p) < m for all p € Spec A. Since dim A = n, we have that there exists a chian of prime
ideals pg C -+- C p, = p, which clearly has height n. It follow that ht(p) = n < m. Now, similarly, we
know that there exists a prime p of height m, but this must also be less than or equal to n, hence n < m
and m < n implying the claim. O

Now note that if we take Hyn(A) C H(A) to be the subset of heights of maximal ideals then same
result holds. We now prove the following lemma:
Lemma 6.1.3. Let dim A = n, and p € Spec A, then:

i) The quotient ring A/p is finite dimensional and satisfies:
dim A/p < dim A — ht(p)

with equality if every maximal chain of prime ideals has the same length.

1) If every maximal chain of prime ideals in A has the same length, then A/p is a ring where every
maximal chain of prime ideals has the same length.

i13) If every mazimal chain of prime ideals has the same length, and p is a mazimal ideal then dim A, =
dim A.

Proof. Note that there is an inclusion preserving bijection Spec A/p = V(p). Moreover, V(p) consists of
all prime ideals which contain p, hence every chain of prime ideals qo C -+ C qx in A/p can be viewed as
a chain of prime ideals p C pg C ---pg in A, which must have length less than or equal to n. It follows
that at minimum that A/p has finite dimension less than or equal to n.
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Now let ht(p) = k, then we have that there is a chain of prime ideals pg C --- C p of length k.
Furthermore, let dim A/p = [, then by the above discussion there is a chain of prime ideal p =qo C -+ - q;
in A of length [. We can glue these chains together to get a chain in A of length [ + k& which must be less
than or equal to n. It follows that:

dim A/p + ht(p) < dim A

implying the inequality.

Suppose that every maximal chain of prime ideals is the same length m; in particular we then have
that Hy(A) = {m}, dim A = m, and ht(m) = m for all maximal ideals of A. Let dim A/p = [, then there
exists a chain of prime ideals containing p, qo C - --q;, which must have qo = p, and q; = m for some
maximal ideal m, as otherwise we would have dim A/p > I. We can extend this to a maximal chain of
prime ideals in A:

PoC - Cpp=p=qC---Cqu=m
where ht(p) > k, and by assumption k 4+ = m. It follows that:
dim A > ht(p) +dim A/p > k + 1 = dim A

hence ht(p) + dim A/p = dim A, implying 7).

For ii), suppose that there was a maximal chain of prime ideals of length k¥ < dim A/p = [. Then
this corresponds to a chain of prime ideals containing p, q9 C --- C qi, such that qo = p and qj is
maximal. We can extend this to a maximal chain of prime ideals for po C -+ -p, =p =qo C -+ C qx
which must satisfy k& + n = dim A since every maximal chain in A has the same length. It follows that
since dim A = dim A/p + ht(p), that n > ht(p) a contradiction. Clearly, there can’t be a maximal chain
of prime ideals of length greater than the dimension, implying 4i).

For 4ii), we have that if every maximal chain of prime ideals has length m, then Hy(A) = m, hence
ht(m) = dim Ay = m for all m. It follows that dim Ay, = dim A for all m as well, as desired. O

Before moving onwards, where we will consider dimension theory in more restrictive cases, we begin
our construction of an infinite dimensional Noetherian ring. We first need the following lemma from
Atiyah and Bott:

Lemma 6.1.4. Let A be a ring such that Ay is Noetherian for all all maximal ideals m, and for all
a # 0 € A, we have that a lies in finitely many m. Then A is Noetherian.

Proof. Let I C A be an ideal, then their exist finitely many maximal ideals {m;}?_; which contain I, as
otherwise there would be some a which lies in infinitely many m. Let a € A, then for all 1 < i < n we
have that a € m;, and that there exist finitely many more m; such that a € m; for all 1 < ¢ < n + k for
some k. We thus obtain the set {m;}77". Choose elements b; € I such that b; ¢ m,; for 1 < j < k;
moreover we have that if 7wy, : A = Ay, is the localization map, then (my,, (I)) is finitely generated from
all 4. For each i, there thus exist elements {c;,}};_; in a whose image generate (mu,(1)). Let:

J=(a,by,c;, 1 <1<k, 1<i<n,1<j <ny)

We wish to show that (7 (1)) = (7w (J)) for all maximal ideals m. Set Iy = (7 (1)), and Jy = (T (J)).
For 1 < < n, this is true as J contains elements which map to the generators of I, by construction. For
each m,4;, 1 <j <k this is true as both I and J contain elements (namely b;) which map to invertible
elements in Ay, , ., so the ideals Iy, and Jy, are the whole ring. For any other maximal ideal, m, we have
that a ¢ m so again the ideals I, and Jy, are the whole ring, and it follows that for all m € |Spec A|, we
have that I, = Jn.

Consider the identity map Id : A — A. This clearly descends to an A-module homomorphism
t:J — I. Moreover, for each maximal ideal, we have that Id induces the identity map A,, — Ay, which
again induces a unique, well defined A, module homomorphism ¢ : Jy,, — I,,. This map is clearly injective
as the it comes from the restriction of an injective map, and moreover, it is surjective as Jy = Iy, and ¢
is an A-module homomorphism, so this map is an isomorphism for all m € | Spec A|. Note that ¢ is also
injective, as J C I by construction, so we need only show that ¢ is surjective. Consider the following
exact sequence:

J — I — cokert — 0
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This then gives rise to an exact sequence on stalks:
Jm = Iy — (cokert)y — 0

but here ¢y, is surjective, so (coker )y, = coker iy, = 0 for all m.

Now suppose for the sake of contradiction that coker: # 0. Let x € coker ¢, and define the ideal:
I'={a€eA:a-z=0}

We have that I’ is contained in some maximal ideal m, so consider I,. Then, x/1 € (coker ¢)m, but this
must be equal to zero as (coker ), = 0. This implies that there exists a y € A~ m such that x -y = 0.
However, this means that y € I’ by definition, a contradiction as I’ C m. It follows that coker: =0, so ¢
is surjective, and thus the restriction of the identity map to J takes J to I, implying I = J. Therefore,
I is finitely generated, and since I was arbitrary A is Noetherian. O

We will also need the following result, known as the prime avoidance lemma.

Lemma 6.1.5. Let I C A be an ideal, and I CJ,c, pi for some finite indexing set L. Then for some i
we have that I C p;.

Proof. We first assume that L = {1,...,n}, is arbitrary and proceed by induction. The case where N = 1
is obvious. Now suppose that n = 2, and that I ¢ p; and I ¢ ps. Then there exists a,b € I such that
a & p1 and b ¢ po, consequently, we have that a € py and b € py as otherwise I ¢ p; U ps and we are
done. We claim that a +b ¢ p; and a + b ¢ py. Indeed, if a+b € py, then a+b—b € p; so a € py, and
similarly for po. It follows that I ¢ p; Upa, so by the contrapositive we have that I C py or I C po.

Now let L = {1,...,n}, and assume the result holds for L' = {1,...,n — 1}. If the product:

I'pl"'pnfl = <a'p1"'pn71:a€-[7pl 6131;-~-7Pn—1pn>

is contained in p,,, then we have that I C p,, or P = (p1---pn—1) C pn. Indeed, if a € I and p € P such
that a,p ¢ p,, then their product is in I - P C p,,, contradicting the fact that p,, is prime. If I C p,
then we are done. If P C p,,, then we have that by induction p; C p,, for some 4. If this is the case, then
IcC Uj#eL p;, so by the inductive hypothesis we are done. We may thus assume that I - P ¢ p,,.

Furthermore, if for all a € I we have that a € p; for some i € L', then I C (J;c;, pi hence by the
inductive hypothesis we are done. So we may further suppose that there exists an element a € I such
that a ¢ p; for all i € L'. Now, if a ¢ p,, then we have that I ¢ |J,.; pi so by the contrapositive we are
done. Hence we may also assume that a € p,,.

Suppose that a € p,,, and I - P ¢ p,,, but I ¢ p; for all i. Take an element b € I - P such that b ¢ p,,;
then we claim that a + b ¢ p; for all i € L. Indeed, if a + b € p; for some i € L', then since b € p; for all
1 € L', we have that a + b — b € p; a contradiction. Similarly, if a + b € p,, then a + b — a € p,,, another
contradiction. It, follows that a 4+ b ¢ p; for all i € L, hence I ¢ |J,c, pi, so by the contrapositive we
have that I C p; for some ¢ € L, implying the claim.

O

We now finally construct our example:

Example 6.1.3. Let A = k[xg,21,...], and define the prime ideals:

pi = (Toiq1, Toiga, .- -, Toit)

for all 7 > 0. We set:

S:ﬂ(A\pi)

i>1

Note that S is multiplicatively closed, indeed if a,b € S, then a,b,€ A \ p; for all i. Since A \ p; is
multiplicatively closed, we have that a-b € A \ p;.

We first claim that S~ A is infinite dimensional. Note that for any i we have the following chain:

<O> C <$2i+1> - <.’1321+1,.T2i+2> c---C <$2i+1,$2i+2, . ,.’I}Qi+1> = p;
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We claim that this is of length 2/*! — 27, Indeed, there are 2°*! — 2¢ elements which generate p;, thus
there are 21 — 2! — 1 inclusions in the above chain ignoring the zero ideal, and when we include the
zero ideal inclusion, we get 2171 — 2% as the length. It follows that ht(p;) > 2¢~1 — 2% which is a strictly
increasing sequence of integers. We obtain that for n € N, we can find and ¢ such that ht(p;) > n, so, via

the inclusion preserving bijection from Lemma 6.1.2, we obtain that dim S™*A = oco.
We will now make use of Lemma 6.1.4 and Lemma 6.1.5 to show that S~'A is Noetherian. Set
S™1p; = (m(p;)), where 7 is the localization map. We first show that any f € k[zg,z1,...] is contained

in finitely many p;. Indeed, since f is a finite sum of polynomials, there is a maximum j such that z;
appears in the polynomial f. We claim that f ¢ py for any k > j. Indeed, if f € py, then there must
be a 2% + m for some m such that Tok 1, appears in the polynomial f. However 2 4+ m > j, hence f
cannot lie in pg. Since there are finitely many p,; such that i < j, it follows that f must lie in finitely
many, perhaps 0, prime ideals of the form p;.

Now let f/g € S7'A, and suppose that f/g lies in infinitely many prime ideals of the form S~ 1p;.
It follows that f/1 lies in infinitely many S~!p;, so f lies in infinitely many p;, a clear contradiction. It
follows that all f/g must lie in finitely many S~ !p;.

We first claim that:
(SilA)Sflpj = Ay,
for all j. Indeed, note that:
s=A~Um
i>1

So consider the localization 7; : A — Ap,. If s € S, then s & (J,~, s, s0 s ¢€ p; for all ¢; in particular,
s ¢ p; so the image of is invertible. It follows that there is a unique map such that the following diagram
commutes:

A T —— Ay,

L
L1

We claim that A, satisfies the universal property of localization with the localization map given by ¢.
Indeed, let ¢ : ST'A — B be a homomorphism such that for all b € ¢(S71A ~ S~'p;), we have that b
is invertible. By the universal property, there is then a unique map A — B that the following diagram
commutes:

A——8B—— B

L7
L~
S—1A

Let a € A~ pj, then a/1 € S7'A ~ S71p;, hence B(a) = ¢(a/1) is invertible. It follows there exists a
unique map « such that the following diagram commutes:

A——pB—— B
[ //
Ay,
Now, we need only check that oo ¢ = 1. Recall that the localizations = and m; are epimorphisms. In
particular, we have that:
aocpom=aom; =f3
whilst:

Yor=p
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hence a0 ¢ = ¢ as desired. It follows that A, is canonically isomorphic to (S —14) S-1p;-
Now let k(p$) be the field of fractions of k[z; : x; & p;]. Moreover, set
B3] = KBS [22r 41, - 2001]
We claim that:
Ap, = (k(p5)1pi])p
where
p; = <m2j+1a cee ,$2j+1> C k(p;)[pj]

There is an obvious inclusion ¢4 : A — k(p;)[pj], so compose this with the localization map w. :
k(p$)p;] — (k(p?)[pj])pz_. Note that «~'(p) C p;, hence if a ¢ p;, we have that ta(a) ¢ pj. Tt fol-
lows that 7. o t4(a) is invertible, hence there exists a unique map « such that the following diagram
commutes:

A TeOlaA — k‘(P?)[P]]P;

5 Oé/
Ay,
Note that k(p§) = k[p§lo. There is a canonical map k[p§] — Ay, given by inclusion, composed with

localization. Every nonzero element in k[p§] then maps to invertible element of A, hence we obtain the
following unique diagram:

k[p;] — Mot — Ay,

I
Iy
k(p$)

Note that 3 is injective as k(p$) is a field. Now, we adjoin the variables {Z5i1,...,Zi+1}, and obtain a
unique map ', such the that the following diagram commutes:

A T — Apj
L,‘A ﬁ' /
|

k(p$) ;]

Note that 3’ restricted to the subfield k(p$) is just 3, and that B'(v2m) = 7;(22i 1m). Moreover, we
have that the unique maximal ideal m,, C A, is generated by {w3;1/1,...,2+1/1}. It follows that
(B Hmy,) C p}, hence if ¢ ¢ p’;, then 5'(c) € my,. Therefore, there exists a unique map & such the the

following square commutes:
i Ap,
Fp)lps] ——m— kp)lpsly,

We check that « o £ = Id. Using the fact that localization maps are epimorphisms, we have that:

A

aofom,=aof

By identifying ¢4 as the tensor product of two epimorphisms, 7o ® Id : k[p§] ®x k[p;] — k(p§) @k k[p;] =
k(p$)[p;], we see that ¢4 is also an epimorphism. It follows that:

aoflowy=aom;=m.0ta
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whilst:
Idom,ota=moury
hence a0 £ = 1Id as desired. To see that & o a = Id, we examine:
oaomj=Eom.ota =B owa=m;
whilst:
Idom; =m;
hence £ o a = 1Id as desired. It follows that:
(S A)s1p, = KOs,

which is the localization of the Noetherian ring k(p$)[p;], so (S™'A)g-1,, is indeed Noetherian.

We now check that each S~1p; is maximal. We claim that S™1A/S~!p; is a field for all i. We need
only check that every nonzero element [a/s] € S~'A/S~!p; has an inverse. Since [a/s] is non zero, we
may assume that a/s ¢ S~1p;, in particular a/1 ¢ S~1p;. It follows that a ¢ p;. If a contains a monomial
cx9iy1, With ¢ € k non zero, then a ¢ p; for any j # ¢ as well, hence a € S. If a contains no such
polynomial, then we consider a 4+ x4:; which cannot lie in p; as this would imply a does, and clearly
cannot lie in p; for any j, so a +z9:i.1 € S. If a € S, then a/1 is invertible, so [a/s] is invertible as well.
Ifa ¢ S, then a + z9:,1 € S, hence we see that:

[a/s] - [s/(a+ xai1)] = [(a + w2 41) /5] - [/ (@ + wai41)] = [1]
so every nonzero [a/s] is invertible. It follows that S~1p; is maximal for all i.

Finally we show that S~'p; are the only maximal ideals of S~ A. Suppose that m is a maximal ideal
of S1A, then, in particular, we have that m corresponds to a prime ideal such that q such that SNq = 0.
In other words, we have that q C |J, p;. We need to now prove a generalized form of Lemma 6.1.5, i.e.
that this implies that q C p; for some i. Our approach will mimic this lemma; that is, we will assume
that q ¢ (J;cp pi for any finite L, and show that this implies q¢ ¢ (J; »;. For all f € A, consider the
following set:

Ly={neN: fep;}

By our earlier work, we know this is a finite set; let f € q, if Ly N Ly # 0 for all g € q, then we claim
that q C ULf p;. Indeed, if g € q, and L, N Ly # 0, then there exist such ¢ € Ly such that g € p;,
hence ¢ C U L, Pi- It follows, by the contrapositive, that if q ¢ (J;c, pi for all there must exist some h
such that Ly N Ly, = 0. Let n € Ly, and m be the highest degree monomial of f. Then we claim that

f—l—xgiflh ¢ p; for all i. Note that L m+1 , = Lj as xgit_ll € pn, and h € p,, so xgi";llh € p; for all 4 such
on 4

that h € p;. Note that for all i € Ly U Ly, we have that f + x5t h & p;, as if f + 25t h € p; for some
i € Ly U Ly, then 7 in either Ly or Ly, hence either f € p; or xg?zﬁ_llh € p;, and in either case we obtain
that both f and m;’iillh are in p; contradicting the fact that Ly N Ly, = 0. Now suppose that i ¢ Ly U Ly,;
since xg}q,frll is one degree higher than the highest degree monomial in f, there can be no combination
of monomials in the sum f + 23t h. Since i ¢ Ly U Ly, it follows that there must a monomial in f
which does not lie in p;, and since there is no combination of monomials, we must have that the same
monomial appears in f + a:giflh. Therefore, f + a:gf[:llh ¢ p;, as g € p; implies that each monomial
of g € p; because p; is generated by monomials. It follows that if q ¢ (J;c; p: for any finite set, then
q ¢ U, pi- By the contrapositive, if ¢ C [J, p;, then there exists some finite set L such that q C J;c; pi-
Lemma 6.1.5 then implies that q C p; for some i, hence m = S~1q C S~1p;, but S~!p; is not the whole

ring, so m = S~ 1p;.
In conclusion, we have shown that the maximal ideals of S~!A are precisely S~!p;, that every element

f/g € S7'A is contained in finitely many S~!p;, and that S’lAS_lpi is Noetherian for all i. By
Lemma 6.1.4, we have that S~!A is Noetherian, hence S~!' A is a Noetherian infinite dimensional ring.

To actually begin calculating the dimensions of our favorite rings, i.e. polynomial rings over a field
and their quotients, we will need to study Noether normalization. In particular, this will eventually allow
us to calculate the dimension of finitely generated k-algebras. We first review some field theory.
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Let K/k be a field extension, i.e. k¥ C K. Recall that a field extension is algebraic if every element in
K is the root of some polynomial in k[xz]. Moreover, a an extension is finite if K is a finite dimensional
k vector space. Every finite extension is algebraic, however there exists non algebraic extensions, which
are known as transcendental extensions. Indeed, consider the field extension Q(x), that is the smallest
field containing @Q and 7. This is not an algebraic field extension as 7 is not the root of any polynomial
in Q[z]”°. We also see that Q(7)/Q is an infinite field extension. Indeed, we claim that {r,..., 7"} is a
Q-linear independent set for all n. Suppose there exist not identically zero a;/b; € Q such that:

a1 an ,

but this now implies that 7 is the root of the polynomial:

Mg goee g mgn
= 7"1'/' ... 7"L'

bl bn
which is obviously false, so it follows that a;/b; = 0 for all 4. Therefore, {m,...,7"} is a linearly
independent set for all values of n, and Q(7) can clearly not be finite dimensional.

p(z)

Corollary 6.1.1. Let K/k be a field extension which is not algebraic. Then K is an infinite dimensional
vector space.

Proof. Since K/k is not an algebraic extension, there exists some o € K such that « is not the root of
any polynomial in k[z]. The argument for Q(r) applies to K proves the claim. O

Despite transcendental extensions being infinite dimensional vector spaces over the base field, we can
still obtain finite numbers from them. Let K/L/k and K/F/k be intermediate field extensions, and
denote by L - F' the smallest field extension of k which contains both L and F. We write that L ~ F if
L - F is an algebraic extension of L and F'.

Definition 6.1.3. Let K/k be a field extension; a transcendence basis for K is a set of algebraically
independent”’” elements S, such that the smallest field extension of k containing S, denoted k(S), satisfies
k(S) ~ K. The transcendence degree K, denoted tdeg; K, is the cardinality of S.

Assuming that all of this well defined for the moment, we move to the following example:
Example 6.1.4. We immediately see that if K/k is algebraic, then K ~ k, so clearly tdeg, K = 0.
Similarly, if K = Q(7) and k = Q, then tdegy Q(7) = 1. Further, if K'/K/k, and K’ is algebraic over
K, then we have tdeg;, K = tdeg, K'.
Example 6.1.5. Let A = k[x1,...,2,], and K = Frac(A), it’s field of fractions. We claim that tdeg; K =
n; let S = {x1,...,2,}, then these are algebraically independent over k essentially by the definition of the
polynomial ring. We need only check that that K/k(S) is an algebraic extension, but this is easily seen

to be true as k(S) = K. Indeed, the smallest field which contains S must also contain every polynomial
in the z;, hence every element of A must be invertible in k(S), so k(S) = 4, = K.

In a sense, the transcendence degree of a field extension is measuring how much the field extension
fails to be algebraic. We also note that the transcendence degree of A,, is what we would expect the
Krull dimension of A to be; this connection between transcendence degree and Krull dimension will be
made clear with the results to come, but we first we check that all of this makes sense.

Lemma 6.1.6. Let K/k be a field extension, then a transcendence basis S exists.

Proof. First note that if there is no nonempty algebraically independent subset of K then k is algebraic.
Indeed, this would imply that {«} is not an algebraically independent subset, hence the homomorphism:

kly] — K
y’—)l’

is not injective, so x is algebraic. It follows that every element of K is algebraic so K/k is an algebraic
field extension. In this case, S = ) is a transcendence basis.

Supposing that K/k is not algebraic, let S be an algebraically independent set, and T a subset of K
containing S which generates K/k (as a k algebra). Let:

% ={B C K : B is algebraically independent and S C B C T'}

96This a hard fact to prove
978 C K is algebraically independent if the map klys : s € S] = K given by ys — s is injective.
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We have that £ is partially order by inclusion, and £ is non empty as it contains S. Take any totally
ordered subset %' C %, and set:

T’:UB

Be%#'

We see that T contains S, and is contained in T'. We claim T” is algebraically independent, as if it isn’t
then we the map:

k‘[l‘titET/}—>K

is not injective, so some p € k[z; : ¢ € T'] maps to zero. Since polynomial rings consist of finite sums
of finite monomials, it follows that there exists {¢1,...,t,} C T’ such that p(t1,...,t,) = 0. However,
since this set is finite, and %’ is totally ordered, we must have that there is some B € %’ which contains
each t;. This would imply B is not algebraically independent though, hence T must be algebraically
independent as well. It follows that every chain in 4 has an upper bound, so by Zorn’s lemma there
exists a maximal element S’ € 4.

We claim that K/k(S’) is algebraic; if it was not, then there is some o € K which is not the root
of a polynomial in k(S’)[z]. It follows that S" U {a} is then algebraically independent, contradicting the
maximality of S’, so no such element can exist implying the claim. O

Lemma 6.1.7. Let K/k be a field extension, then the relation ~ is an equivalence relation, and tdeg;, K
1s well defined.

Proof. 1t is clear that for K/L/k, and K/F/k, we have that L ~ F' < F ~ L, and L ~ L, hence the
relation is both symmetric and reflexive. We check that this relation is transitive, and thus an equivalence
relation.

First note that L ~ F if and only if every element of L is algebraic over F', and every element of
F' is algebraic over L. Indeed, suppose L ~ F, then x € L C L - F' is algebraic over F' and vice versa.
Now, conversely, suppose that every element of L is algebraic over F', and every element of F' is algebraic
over L, and let x € L - F. In particular, since L - F' is the smallest field extension of k£ containing L and
F, hence x can be written as a sum ), l;f;, where [; € L and f; € F. Each [; is algebraic over F' by
assumption, hence each [; f; is algebraic over I, so x is algebraic over F'. Similarly « is algebraic over L,
hence L - F' is an algebraic extension of L and F' as desired.

Let L ~ F ~ E. Let « € L, then x is algebraic over F' so must be algebraic over E, hence every
element in L is algebraic over F, and vice versa. It follows that ~ is an equivalence relation as desired.

Suppose that k(S) ~ K, and S is not finite. If S’ is any other transcendence basis, then we must have
that k(S”) ~ k(S) by the transitivity property of ~. For each s’ € S’, there must be a finite set Sy C S
such that s’ is algebraic over k(S ). Set:

T=1JS

s'eS

We have that T C S; suppose that S ¢ T, then there is some s € S~ T which is algebraic over k(S5’).
However, by construction, k(S’) is algebraic over k(T), hence s is algebraic over T'. There is then some
polynomial p € k(T)[z] such that p(s) = 0, but since T C S, this implies that S is not algebraically
independent. If S’ is finite then T is a finite collection of finite sets, and thus finite, so S is finite as well,
hence S’ is not finite. We then have that:

15| = =19

U Ss/

s'es’!

as S’ is infinite and each S, is finite.

Now note that if S is finite, then by the above argument we must have that S’ is also finite. Let
S={s1,...,8n},and 8" = {t1,...,t,; }, and without loss of generality suppose that m < n. We proceed
via induction on m. If m = 0, then S’ is empty, and K/k is algebraic, hence n = 0 as well. If m > 0,
then k(S) ~ k(S’) so every element of S is algebraic over S’. It follows that we must have that there is
an irreducible’™ polynomial p € k[yi,...,ynr1] such that p(s1,...,8n,tm) = 0. Since t,, is not algebraic

981f it was not irreducible, S or S’ would not be algebraically independent.
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over k, p cannot be a polynomial entirely in y,+1, so assume that p uses y,, without loss of generality.
Let T = (S1,..+,80-1,tm), then we claim that K/k(T) is algebraic. To do so, note that k(T s,)/k(T)
is algebraic as s, is the root of p(s1,...,8n-1,"tm) € k(T)[yn], and that K/k(T,s,) is algebraic as
S C TU{s,}. We thus have the following chain of algebraic extensions:

K/K(T, sn) /K(T)

implying that K/k(T) is algebraic. We want to show that T is a transcendence basis; if T is not
algebraically independent, then there would be an irreducible polynomial ¢ € k[y1,...,yn] such that
q(81, -y 8n—1,tm) = 0 which must involve y,, as {s1,...,s,—1} is algebraically independent. This implies
that ¢, is algebraic over k(si,...,Sp—1), SO:

k(T,s,)/k(T)/k(s1,--.,Sn—1)
is a chain of algebraic extensions. This implies that s,, is algebraic over k(sq, ..., $,—1) which is obviously

impossible as S is algebraically independent.

Since T is algebraically independent we have that T is a transcendence basis for K. Now consider
K /k(ty,), then we have that k(S") = (k(tm))(t1,. .., tm—1) and K/K(S') is algebraic so {t1,...,t,m_1} isa
transcendence basis for K/k(t,,). Furthermore, we have that k(T) = (k(t;))(s1,- .-, 8n—1), and K/k(T)

is algebraic, so {s1,...,8,—1} is a a transcendence basis for K/k(t;). By the inductive hypothesis
n—1=m — 1, hence n = m and we must have |S| = |5’| in the finite case as well.
It follows that tdeg; K is independent of our choice of transcendence basis as desired. O

The following result mimics the fact that for finite field extensions K/L/k we have:

Lemma 6.1.8. Let K/L/k be field extensions with finite transcendence degrees, then:
tdeg, K = tdeg; K + tdeg;, L

Proof. Let S C L be a transcendence basis for L/k, and T C K be a transcendence basis for K/L. We
claim that SUT is a transcendence basis for K/k. We first show that K/k(SUT) is algebraic; examine
the following tower of field extensions:

K/L(T)/k(SUT)

Note that K/L(T) is algebraic, so we need only show that L(T)/k(S UT) is algebraic. Any element in
L(T) can be written as:

Z Lit;

where [; € L, and t; € T. Since L/k(S) is algebraic, we have that each I; is the root of some polynomial
in k(S)[x]. However, this polynomial also exists in k(S U T)[z], hence each [;, viewed as an element of
L(T), is algebraic over k(S UT). Each ¢; is also algebraic, as the polynomial x — ¢, € k(S UT)[z] is a
polynomial which has ¢; as a root. It follows that any element of L(T') is the sum of products of algebraic
elements, and is thus algebraic, so L(T)/k(S UT) is an algebraic extension. Since towers of algebraic
extensions are algebraic, K/k(S UT) is algebraic.

Now let S = {s1,...,8n}, and T = {t1,...,tm}, and consider the homomorphism:

k1, s Tny Y1y ey Ym] — K
T;—> S;
Yi — t
If SUT is not algebraically independent, then there is some polynomial p in k[x1,...,Zn, Y1, -, Yn)

which this map sends to zero. Consider the polynomial:

¢ =p(s1,- s 50, 0s)
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i.e. the polynomial ¢’ € K[yi,...,ym] given by evaluating p on {si,...,s,}. The coefficients of ¢’ are
multiples of elements of k with elements of L, hence the coefficients of ¢’ lie in L, meaning we have that
q € Ly, Ym] C Kly1,--.,Ym]. If ¢ is identically zero, then the polynomial ¢ = p(-,...,-,1,...,1) €
k[x1,...,2,] has a root at (s1,...,S,), implying that S is not algebraically independent, a contradiction.
It follows that ¢’ is not identically zero, however, ¢’ then has (¢1,...,t,,) as a root so T is not algebraically
independent, another contradiction. We thus see that no such g can exist, hence S UT is algebraically
independent as desired.

By the above, we have that S UT is a transcendence basis, hence:
tdeg, K = |[SUT| = |S| + |T| = tdeg K + tdeg;, L
as desired. O

The following lemma will prove useful, and generalizes Fxample 6.1.5:

Lemma 6.1.9. Let A be an integral’ finitely generated k algebra. Then if K = Frac(A), tdeg, K is
finite.

Proof. Since A is finitely generated, and an integral domain, there exists a p € A}* such that:
A=Eklty,...,tm]/p
Denote by a; the image of t; in A, then clearly K = k(ay,...,am,). Let'":
n=max{|B|: B C {a1,...,an}, B is an algebraically independent set over k}

We claim that tdeg, K = n; indeed without loss of generality we can take {a1,...,a,} to be an alge-
braically independent set, and since for any i # 1,...,n, the set {a1,...,an,q;} is algebraically depen-
dent, we have that k(ai,...,an, ani1,-..,am)/k(a1,...,a,) is algebraic. It follows that {aj,...,a,} is
transcendence basis for K, and thus tdeg;, K = n. O

With this notion of transcendence degree we prove the following theorem, known as the Noether
Normalization:

Theorem 6.1.1. Let A be an integral finitely generated k algebra, and K it’s field of fractions, as in
Lemma 6.1.9. If tdeg, K = n, then there exists an algebraically independent subset {ay,...,a,} C A
over k, such that A is a finite extension of k[y1,...,Yn].

Proof. Since A is a finitely generated k algebra, and an integral domain, we can write:

A= k[tl,,tm]/p

for some p € A", and m > 0. Denote by a; the image of ¢; under the above projection. By Lemma 6.1.9
we have that n < m; we proceed by induction on m. The base case, m = n, immediately implies that
{a1,...,anm} is a transcendence basis for K, thus p = (0), and so A is trivially a finite extension of
Elyi, -, Yn=m]-

Now suppose that m > n, and we have proven that if B = k[uq,...,um—1]/q, and tdeg, Frac(B) =n
then B is a finite extension of k[y1, ..., yn]. Since n < m, we have that the map:

k’[tl,...,tm] — A
pr—rplay,...,am)

is not injective. Let p lie in the kernel of the above homomorphism. Moreover, for i # m set b, = a; —aj}
for some 7;. Note then that:

p(bl + a:ﬁa RS bmfl + a:ﬁnilaam) =0
Let B be the subalgebra generated by b;, then we want to show that the polynomial ¢ € B[z] defined by:

q(iﬂ) = p(bl + z" Sy b’m—l + .’Ij‘rm_l’x)

99As in A is an integral domain, not that A is integral over k.
100Note that such an n < m as there are only finitely many subsets of a1, ..., am, the cardinality of each being bounded
above by m.
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is monic for some r;. Now note that:

p= > kijinyit -yl

d1eim
so:
q(x) = Z kil---im (b1 + g )il . (bmfl 4 xT7n71)i7n—1xi1y1
11 lm
We can thus choose {ri,...,7m—1} so that the highest degree term of ¢(z) is contained in the single
monomial:

kiy i, (bl + )jl S (bm—l + xrmfl)jmfll,jm

for some j1 - - jm. The polynomial:

O S S AR M

[ARER 2
is then monic, and satisfies ¢(a,,) = 0. It follows by Corollary 3.9.1 that A is an integral B algebra.

We now note that A is a finitely generated B algebra; indeed, we have that each a; # a,, is the image
of b; + aji, and that a,, = b,. By Proposition 3.9.1 we now have that A is a finite B algebra.

Since B is a subalgebra of an integral domain, B is an integral domain. Let:

k[ul,...,um_l] —BCA
then B = kluq,...,umnm—1]/q for some prime ideal q. In particular, Frac(B) = k(by,...,byn—1). In fact, we
have that:
K = k(al, e 7am)/k(b1, ey bm—l)
is algebraic, as q € k(b1,...,bn—1)[x] as well. It follows by Lemma 6.1.8 that:

tdeg, K = tdegpc(p) K + tdegy, Frac(B) = tdeg;, Frac(B)
hence by the inductive hypothesis there exists a finite extension:
Elyi,...,yn) = B
By Lemma 3.9.1 we have that the composition:

klyr,...,yn) > B — A

makes A a finite k[y1, ..., yn] algebra. Since each map is injective, A is a finite extension of k[y1, .. ., yn],
and letting «; denote the image of y; provides us with an algebraically independent subset of A, implying
the claim. O

We will need the following lemma to make the connection between transcendence degree, and the
Krull dimension of finitely generated integral domains.

Lemma 6.1.10. Let ¢ : B — A be an integral extension, then dim A = dim B.

Proof. The fact that ¢ is an integral extension, means that Going Up (i.e. Lemma 3.10.4) holds for the
induced map Spec A — Spec B. In particular, if we have a chain of prime ideals of B:

(0) Cp1C o pn
then by inductively applying Going Up, we obtain a chain of prime ideals in A:
0 Ccac - a

where ¢~!(q;) = p;. Note that q; # q;+1, hence dim B < dim A.
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Now note that given a chain of prime ideals in A:
(0)Car C
we obtain a chain of prime ideals in B given by:
(0) Cp1C-p

where p; = ¢~ 1(q;). If we can show that ¢~ 1(q;) # ¢ 1(qs+1) for all 4, then we will have dim A < dim B
and be done.

‘We have that:
f7H(p) = Speck, ®p A

we claim that k, ®p A is a zero dimensional ring. Indeed, by Proposition 3.9.2, integral morphisms are
preserved by base change, hence k, — k, ®p A is integral. Moreover, it is injective as &, is a field. It
thus suffices to show that any integral extension k& — A implies dim A = 0. Let p C A be a prime, then
we claim that A/p is a field, and thus every prime is maximal. Note that the composition k& — A/p is
now an integral extension of k into an integral domain. Let [a] € A/p be nonzero, then we have that
there exists a monic polynomial of smallest possible degree with coefficients in k satisfying:

[a]" +cpala]" ™+ =0

Since A/p is an integral domain, we then have that ¢ = 0, as otherwise [a] = 0, or the polynomial is not
of smallest degree. In particular we have that:

1= —cg ([al" + cor[a]"™ 4 -+ + 1 [a])
a7 = g ([a]™1 + en_ala]* L+ + 1)

implying that A/p is a field. It follows that every prime ideal is maximal and thus dimA = 0. In
particular, we have that k, ®p A is zero dimensional ring, so if $~'(q;) = ¢~ (q;+1) then we cannot have
q; C qi+1 as this would imply that dim k, ® g A has dimension greater than zero. O

The following result is our entire motivation of going over the notion of transcendence degree:

Theorem 6.1.2. Let A be an integral finitely generated k algebra, and K it’s field of fractions as in
Lemma 6.1.9; then dim A = tdeg, K.

Proof. We prove this on induction of tdeg; K. If tdeg, K = 0, then we have by Noether Normalization

a finite extension k — A. Proposition 3.9.1 and Lemma 6.1.10 then imply the base case.

Supposing this holds for transcendence degrees less than n, suppose that tdeg, K = n. Again by
Noether Normalization, we have a finite extension k[zi,...,z,] — A. It thus suffices to show that
dim k[z1,...,2,] =n by Lemma 6.1.10. Note that dim k[z1,...,z,] > n as we always have the following

chain of ideals:
(0) C{x1) C -+ C {21y, )

Now suppose there exists a chain of prime ideals:

(0) Cprepm
where m > n. Then take an irreducible element f € p;, and construct the chain of prime ideals:

0) () pm
We see that dim k[z1,...,2,]/ (f) has dimension at least m — 1 > n. We claim this is a contradiction,
as tdeg;, Frac(k[z1,...,2,]/ (f)) = n — 1. Indeed, without loss of generality assume that z, occurs in f,

then with B = k[zy,...,x,]/ (f), we claim that {b; = [z;]}}-]' is a transcendence basis for Frac(B)/k.
We see that this algebraically independent as the map:

Elyi, ..., yn—1] — B C Frac(B)
Yi — b
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Suppose that p — 0 € B, then in particular, if:
P= D ki Uiy

i1 —1

we have that:
Do Kol =0 3 ki, al € ()
i1'~~7;n71 7;1"‘i71—1
which is impossible by construction. We claim that Frac(B)/k(by,...,b,—1) is algebraic. Indeed, if:
f= Z Cil“-inxlf xi{l
11l

let g € k(by,...,bp—_1)[z] be given by:
9= i b bt
i1eeein

then clearly g(b,) = 0, so Frac(B)/k(b1,...,b,—_1) is indeed algebraic. It follows that {by,...,b,—1} is
a transcendence basis, thus dim B = n — 1, contradicting the existence of a chain of prime ideals in
klx1,...,x,] of length m > n. Therefore, dim k[z1, ..., z,] < n, implying equality, and so dim A = n as
well. O

We end this section by noting we now have a slick proof of Zariski’s lemma:

Theorem 6.1.3. Let A be a finitely generated k algebra, and m € |Spec A|. Then kn/k is a finite
extension of k.

Proof. Note that the residue field ky, is given precisely by A/m. In particular, we know that kn, has
dimension 0 as it is a field, and that ky, is a finitely generated k algebra, via the composition:

k—A—kn

The field of fractions of ky, is then obviously &y, hence we have that tdeg; kn = 0. In particular, ky /k
is an algebraic, i.e. integral extension, and is finitely generated, hence by Proposition 3.9.2 we have that
kw /K is finite. O

6.2 Dimension of Schemes
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